
AVACS – Automatic Verification and Analysis of Complex Systems

REPORTS
of SFB/TR 14 AVACS

Editors: Board of SFB/TR 14 AVACS

A Comparative Reliability Analysis of

ETCS Train Radio Communications

by

Holger Hermanns1,2 David N. Jansen3 Yaroslav S. Usenko4

1Dependable Systems and Software Group,
Universität des Saarlandes, Saarbrücken, Germany

2Formal Methods and Tools Group,
Universiteit Twente, Enschede, the Netherlands

3Programming Logics Group,

Max-Planck-Institut für Informatik, Saarbrücken, Germany

4Laboratory for Quality Software,
Technical University of Eindhoven, Eindhoven, the Netherlands

email: hermanns@cs.uni-sb.de, dnjansen@cs.utwente.nl, y.s.usenko@tue.nl

AVACS Technical Report No. 2
February 2005

ISSN: 1860-9821



Publisher: Sonderforschungsbereich/Transregio 14 AVACS
(Automatic Verification and Analysis of Complex Systems)

Editors: Bernd Becker, Werner Damm, Martin Fränzle, Ernst-Rüdiger Olderog,
Andreas Podelski, Reinhard Wilhelm

ATRs (AVACS Technical Reports) are freely downloadable from www.avacs.org

Copyright c© February 2005 by the author(s)

Author(s) contact: Holger Hermanns (hh@avacs.org).



A Comparative Reliability Analysis of

ETCS Train Radio Communications∗

Holger Hermanns1,2 David N. Jansen3† Yaroslav S. Usenko4

1Dependable Systems and Software Group,
Universität des Saarlandes, Saarbrücken, Germany

2Formal Methods and Tools Group,
Universiteit Twente, Enschede, the Netherlands

3Programming Logics Group,
Max-Planck-Institut für Informatik, Saarbrücken, Germany

4Laboratory for Quality Software,
Technical University of Eindhoven, Eindhoven, the Netherlands

email: hermanns@cs.uni-sb.de, dnjansen@cs.utwente.nl, y.s.usenko@tue.nl

14 February 2005

Abstract

StoCharts have been proposed as a UML statechart extension for performance and
dependability evaluation, and were applied in the context of train radio reliability assessment
to show the principal tractability of realistic cases with this approach. In this paper, we extend
on this bare feasibility result in two important directions. First, we sketch the cornerstones of
a mechanizable translation of StoCharts to MoDeST. The latter is a process algebra-based
formalism supported by the Motor/Möbius tool tandem. Second, we exploit this translation
for a detailed analysis of the train radio case study.

Keywords. UML, stochastic systems, concurrency, tool support, reliability, wireless com-
munication, European Train Control System (ETCS)

1 Introduction

The UML is pervading many challenging engineering areas including real-time and embedded
system design. Embedded systems designers are usually facing various challenges if they strive for
systems with predictable quality of service (QoS). Most QoS aspects of current embedded systems
are time-related features and properties, and are of stochastic nature. While in principle the
UML provides the right ingredients to model discrete event dynamic systems, it lacks support for
stochastic process modeling.

Together with Katoen [17] we have proposed a QoS-oriented extension of UML statechart
diagrams, StoChart, which enhances the basic formalism with two distinguished features. One
enhancement allows state transitions to select probabilistically out of different effects, much like

∗This work has been supported by the Dutch and German research councils as part of the bilateral cooperation
program VOSS, as well as the German special research initiative SFB/TR-14 AVACS and the Dutch innovation
award NWO Vernieuwingsimpuls.

†Current address: Formal Methods and Tools Group, Universiteit Twente, Enschede, the Netherlands

1



the rolling of a die can have one out of six effects, determined probabilistically. The second
extension provides the “after” operator of statecharts with a stochastic interpretation, allowing
the use of arbitrary probability distributions for modeling, such as EXP[10 min] for a negative
exponential distribution with a mean of 10 minutes, or UNIF[10 h, 15 h] for a uniform distribution
in the interval from 10 to 15 hours. The resulting statecharts dialect is called StoCharts, and
contains UML statechart diagrams as a subset.

To make StoCharts a useful tool in QoS modeling, and to support trustworthy model-based
QoS prediction, StoCharts are equipped with a rigid formal semantics [18]. This semantics com-
bines concepts from timed, stochastic and probabilistic automata [1, 7, 25]. In order to associate
a stochastic interpretation to collaborative collections of statecharts embedded in arbitrary envi-
ronments, StoCharts are equipped with a compositional semantics, which uses concepts from
Input/Output (I/O) automata [20]. The semantics associated with StoCharts is based on the
requirements-level semantics of Eshuis and Wieringa [11].

The examples we studied with StoCharts so far [17, 16] show the principal modeling con-
venience of the formalism, but they also show that the lack of tool support is hampering its
application. While drawing tools for UML statechart diagrams and StoCharts are at hand (e.g.
TCM [10]), analysis tools which can digest StoCharts designs are missing. Therefore we have
decided to invest in a tool environment for StoCharts. Instead of starting a new tool devel-
opment, we decided to bridge to the ongoing activities in the context of the Motor tool [5].
Motor is linked to the Möbius tool set [9] for discrete event simulation-based analysis, and it
uses the modeling and specification language MoDeST as an input language. MoDeST is a
formal language to describe stochastic timed systems [8], equipped with a rigid formal semantics.
The functional core of MoDeST can be considered as a simple process algebra enriched with
some convenient language constructs, and a C-like notation. This core language is enriched with
several modeling concepts tailored to model timed and/or stochastic systems. MoDeST has been
successfully used in a number of nontrivial case studies, see for example [4].

The semantic basis of StoCharts and MoDeST is similar, since both map onto variations of
timed and stochastic automata. Thus, at least in principle, it appears feasible to define a sound
translational semantics which maps StoCharts designs onto MoDeST code. The latter can
then be fed into the Motor/Möbius tool-tandem. However, several features of statecharts, such
as border-crossing transitions, pose challenges to this semantics. This observation motivates the
work reported in this paper, where we explore the most important elements of StoCharts and
discuss their counterparts in MoDeST. The translational semantics is developed by means of a
recent exemplary case study [16], which uses all intricate concepts of statecharts and StoCharts.
This allows us to identify subtle issues. Furthermore, the concrete translation for this particular
case, allows us to use Motor and Möbius for a detailed parametric analysis of the case study.

The case study focusses on a safety critical fragment of the European Train Control System
(ETCS) standard. This standard aims at ensuring interoperability of European railway systems
in the future. Communication among ETCS components (trains, trackside equipment etc.) will
be based on mobile communication using GSM-R, an adaptation of the GSM protocol to railway
applications. The safe and efficient operation of ETCS is, of course, of prime importance. The
specifications of GSM-R and of ETCS contain various QoS requirements such as “a connection
must be established within 5 seconds with 95% probability”. Due to the architecture of ETCS,
on-board and trackside data processing as well as the radio communication link are crucial factors
in ensuring the ETCS requirements. In order to study this issue, we recently developed a Sto-

Chart model [16]. Albeit being simple, the StoChart-model enabled us to identify bounds
on the distance between consecutive trains on a track, under which crucial QoS requirements
of ETCS are still satisfied. To arrive at these results, the StoChart collection was manually
translated into a simulation model. This model in turn was fed into the tool ProVer [26] which
implements a variation of discrete event simulation. In this paper, we instead translate the Sto-

Chart-model into MoDeST, and use the tool combination Motor and Möbius to perform a
much more detailed and parametric analysis, which (as a sanity check) is still consistent with the
results obtained via ProVer. A particular aspect of this detailed analysis lies in the fact that we
exercise a design-by-contract approach in a quantitative setting, allowing interesting insight into

2



the general behaviour of the ETCS system.
In summary the contribution of this paper is threefold. (1) The paper sets the formal grounds

for a sound and mechanizable translation from StoCharts to MoDeST, developed by means of
the ETCS case. (2) The translation enables a mechanic and thus more detailed analysis of the
ETCS case, owed to the power of the Möbius tool interface and the simulation engine. (3) The
paper sheds light on the contractual guarantees the system can provide, and their roots in the
contractual guarantees given by the GSM-R specification.

Organization of the paper. Section 2 introduces the modeling formalisms that are used in
this paper. Subsection 2.1 introduces StoCharts, briefly touching upon semantic issues, and
Subsection 2.2 introduces the MoDeST language. Section 3 contains the description and modeling
of the ETCS case study in both StoCharts and MoDeST. The analysis is presented in Section 4.
Finally, Section 5 discusses lessons learned from this case study and concludes the paper.

2 The modeling languages

2.1 StoCharts

This section gives a brief overview of StoCharts and reviews the underlying semantic model.
We refer to [17, 18] for a thorough discussion of the StoChart formalism and a comparison to
statechart diagrams.

Abstract syntax. A basic StoChart consists of

• a finite set of Nodes1 with a tree structure, as for statechart diagrams. Nodes are of type
‘basic’ (leaves of the tree), ‘and’ , or ‘or’. Each or -node has a distinguished, initial child
node.

• a finite set of Events, as for statechart diagrams.

Later on, we will also use pseudo events. A pseudo event is an expression of the form after(F ),
where F : [0,∞) → [0, 1] is a so-called cumulative distribution function, i. e., a function to
express a stochastic delay: F (t) is the probability that the delay is at most t time units.

Some simple cumulative distribution functions are denoted as follows: DET[t] means a de-
terministic delay of time t; EXP[t] means an exponentially distributed delay with mean time
t.

• a finite set of (typed) variables or attributes together with an initial valuation, assigning
initial values to the variables.

• a finite set of P-Edges, corresponding to the transitions of a statechart diagram. A P-
edge consists of a set of source nodes, a triggering event or pseudo event, a guard, which
jointly describe when the P-edge can be taken. The reaction is described by a probability
distribution over pairs which consist of a set of actions and a set of target nodes.

Drawing a StoChart. A StoChart is drawn almost like a UML statechart diagram. Nodes
are drawn as rectangles with rounded corners; the children of a node are drawn inside its boundary.
Children of an and -node partition the node by dashed lines. The initial node is indicated by an
arrow pointing from a small dot to the initial node.

A (nontrivial) P-edge is graphically depicted in two parts: an arrow labeled with an event
and a guard directed to a P-pseudonode (drawn as P©) from which several arrows to target nodes
emanate, each labeled with a probability and an action set (similar to a compound edge, where
targets are chosen according to a condition).

1The UML specification for statechart diagrams [23] actually speaks of states, but we prefer to call them otherwise
because the system can be in more than one node at the same time.

3



idle

transmitting 1 transmitting 2 transmitting 3

transmit /

after(DET
[0.5 sec])

P P P
0.05 /

0.95 /
receive

after(DET
[0.7 sec])

0.2 /

0.8 /
receive

after(DET
[1.2 sec])

0.99 /
receive

0.01 /

connected

handover

entry / h_start
exit / h_end

after(EXP[50 sec]) after(DET[0.3 sec])

Figure 1: Example StoChart

A trivial P-edge (where probability 1 is assigned to a unique action set and target nodes set)
can be drawn like a transition in a statechart diagram: a single arrow labeled with event, guard
and actions.

Intuitive semantics. Like a statechart diagram, a StoChart is always in some state which
consists of one or several nodes: if an and -node is part of the state, all of its children are in the
state. If an or -node is part of the state, exactly one of its children is so.

A P-edge is enabled if all its source nodes are part of the current state, its guard holds, and
either its event happens or the delay associated with its after operator expires. The system selects
as many enabled P-edges as possible for execution (a choice between conflicting edges is often
resolved by a priority scheme) and resolves the discrete probabilistic choices. Once the selected
edges are taken, their source nodes are left, their actions are executed, and their target nodes are
entered. To simplify the analysis, we assume that transitions are instantaneous.

The new state is completed to satisfy the rules stated above about children of and - and or -
nodes; if no edge specifies which child of an or -node is to be entered, the initial child is chosen.

On entering a node with an outgoing (P-)edge labeled with an after(F ) operation, a sample
is taken from distribution F and a timer is set accordingly. The corresponding outgoing edge
becomes enabled once the timer expires.

Example StoChart. Figure 1 shows a small example of a StoChart. It is a model for a
fragment of the transmission medium in the ETCS system. The transmission medium reacts to
transmitting a message (indicated by event transmit) by generating a reception some time later
(indicated by action receive). The delay is required to be [12]

• at most 0.5 seconds with 95% probability;

• at most 1.2 seconds with 99% probability (i. e. more than 0.5, but ≤ 1.2 seconds with 4 %
probability);

• at most 2.4 seconds with 99.99% probability (i. e. more than 1.2, but ≤ 2.4 seconds with
0.99% probability).

The StoChart models the worst case: the time between the event transmit and the action receive
is exactly 0.5 seconds with probability 0.95, exactly 0.5 + 0.7 = 1.2 seconds with probability
0.05 ·0.8 = 0.04, and exactly 0.5+0.7+1.2 = 2.4 seconds with probability 0.05 ·0.2 ·0.99 = 0.0099;
the message is lost with the remaining probability. This behavior is modeled by three after
operators, each with a deterministic delay. Figure 2 illustrates the corresponding cumulative
distribution function: the solid line indicates the probability that the communication succeeds

4



Figure 2: Cumulative distribution function for the transmission delay

within a given time (in seconds), as modelled in the StoChart. In reality, the communication
delay may be shorter, for example as indicated by the dotted line in figure 2.

The above may be interrupted by a so-called handover, where the connection between the
train and the radio block center is handed over from one radio cell to another. As radio cells may
have different sizes, we cannot model this by a deterministic delay. We will argue later that the
train moves from one radio cell to another every 50 seconds on average. If only the average of
a stochastic distribution is known, the most general stochastic distribution that can be chosen
is the exponential one. A cell handover lasts 0.3 seconds. When a handover starts, the current
transmission gets lost.

Semantic model. The formal semantics of StoCharts [17] is defined in terms of an exten-
sion of labeled transition systems. These transition systems are equipped with timers to model
stochastic delays, and with a set of actions to model system activities. The use of timers in tran-
sition systems is similar, though not equivalent to the use of clocks in MoDeST and e. g., timed
automata [1, 19]. While clocks run forward at the same pace and are always reset to 0, our timers
are initialized by sampling a stochastic distribution and run backwards. On the other hand, our
timers are always checked for expiration (i. e., is the timer equal to zero?), while clocks can be
checked against complex conditions.

Input and output actions are distinguished to allow for the composition of transition systems,
like in I/O-automata [20]. Three types of transition relations are used: input transitions, output
transitions, and delay transitions, the latter being enabled once a timer expires. Whereas input
and delay transitions are standard ternary relations, the output transition relation is probabilistic.
The resulting model is called a stochastic I/O-automaton (Iosa, for short).

A Iosa is a specific semantic structure that contains exactly the ingredients needed for stochart
semantics [17]. Generalised Semi-Markov Processes (GSMP) are a frequently found model for
stochastic processes, and often, a Iosa can be translated to a GSMP. However, GSMPs do not
allow nondeterministic choice, and they also restrict the allowed stochastic distributions so as to
reduce the probability that two timers expire at the same moment (introducing nondeterminism
again) to zero. The Iosa associated with the StoCharts in our case study does not contain any
nondeterminism.

2.2 MoDeST

MoDeST is a formal language to describe stochastic timed systems [8], equipped with a rigid
formal semantics. The functional core of MoDeST can be considered as a simple process algebra
enriched with some convenient language constructs. The syntax resembles that of the programming
language C and the modeling language Promela [15]. Data modularization concepts and exception

5



handling mechanisms have been adopted from modern object-oriented programming languages
such as Java. Process algebraic constructs have been strongly influenced by FSP (Finite State
Processes [21]), a simple, elegant calculus that is aimed at educational purposes.

This core language is enriched with several modeling concepts tailored to model timed and/or
stochastic systems. We highlight three particular semantic concepts which are well-established in
the context of real-time and stochastic discrete event systems:

• Probabilistic branching is a way to include quantitative information about the likelihood of
choice alternatives.

• Clocks are a means to represent real time and to specify the dynamics of a model in relation
to a certain time or time interval, represented by a specific value of a clock.

• Random variables are often used to give quantitative information about the likelihood of a
certain event to happen after or within a certain time interval.

The MoDeST language allows one to specify processes, and to compose them in parallel using a
‘par ’ operator. Processes can manipulate data variables by assignments. Data variables are typed
and must be declared, and the point of declaration determines their scope. In particular, they may
be local to a process, or global, in which case they are shared between all processes. A particular
type of variable which can be declared is the clock type. Clocks can be read like an ordinary float
variable, but advance their value linearly to system time. All clocks run at the same speed. Clocks
can only be set to zero. The language provides generic constructs to sample values from a set of
predefined probability distributions. For instance, ‘xd = Uniform(10, 20)’ assigns a sample from
the uniform distribution on the interval [10, 20] to the variable ‘xd’. Other types of distributions
are, e. g., Exponential(rate) and Normal(mean,var).

Apart from manipulating data, processes can interact with other parallel processes (or the
environment) by means of actions. Their occurrence within a process can be guarded by a ‘when(.)’
clause, specifying a enabledness condition. In particular, the boolean expression in a ‘when(.)’
clause may refer to clock values. In that case, an action may be enabled as soon as the when(.)
condition becomes true (and no other action becomes enabled earlier). We assume a maximal
progress semantics. – Processes in the body of a ‘par ’ construct perform actions and assignments
independently from each other, except that common (non-local) actions need to be executed
synchronously, à la CSP [14].

MoDeST provides means to raise exceptions inside a try block and to handle them. When
an exception is raised, process control is handed over to the exception handler contained in a
catch block. Another, standard way of handing over process control is by a simple process call.
Upon termination of the called process, the calling process gains back control, like in an ordinary
procedure call.

The ‘alt’ construct is used to specify choice between different possible behaviors. In general,
this choice is made nondeterministically. A variant thereof is the ‘palt ’ construct, which provides
a weighted probabilistic choice, where each weight has the form :w:, with w a positive real number.
The ‘do’ keyword indicates a repetitive behavior. Upon termination of the body of this construct,
the body is restarted, until a ‘break’ is encountered.

As an example of a small MoDeST code, the following fragment describes a process C 1 which
waits for five time units prior to randomly selecting between continuing as process C 2 (5% of the
cases) or performing an action c (95% of the cases).

1 proc C_1 ()
2 {
3 clock x=0;

4 when (x==5)
5 tau; palt

6 {
7 :5: C_2();

8 :95: c;
9 }

10 }

6



In this fragment, the action ’tau’ stands for an internal step, in particular ’tau’ is a local action
which is not attainable for synchronisation.

3 The ETCS system and its Modeling

3.1 Informal Description of ETCS system

This section briefly introduces into the high-speed train radio signaling case study we considered
[16], inspired by earlier work by Zimmermann and Hommel [27].

European Train Control System. The upcoming European Train Control Systems (ETCS)
serves as a unifying standard of many European railways. It is promoted by the European Union
to simplify access to and cross-border traffic in between different national rail networks. The
main constituent is a uniform communication infrastructure across Europe. This communication
infrastructure is based on GSM-R, which is an adaptation of the well-known GSM protocol for
wireless communications to railway specific applications.

ETCS levels. ETCS knows multiple levels to enable gradual migration from the current sys-
tems. In our case study, we will only consider level 3, the highest level defined. On this level,
important informations are exchanged betwen trains and trackside coordination units, so called
radio block center (RBC) via GSM-R-based radio communication. In particular, a train needs
to receive so-called movement authorities (MAs) from the RBC in order to continuously run at
high speed. These MAs grant the train exclusive access to some physical track block, and are sent
by the RBC if it is certain that the preceding train has moved ahead in its entirety. To assure
this, ETCS level 3 requires that trains are equipped with an onboard devices which check train
integrity. The integrity status and the current and position are reported from train to RBC at
regular intervals. This enables the RBC to declare the track behind the train clear with virtually
no delay, which in turn is a requirement for so-called moving-block operation, where the track
block granted exclusively to a specific train is not a fixed unit of the track between two signals,
but instead moves with the train along the track.

This moving-block operation is expected to reduce the headway, i. e., the time between the
passage of consecutive trains at some point of the track, well below 3 minutes, which is the usual
headway in fixed block operation. The minimal headway is the sum of several delays (assuming
trains running at 300 km/h): a delay needed for train integrity check (< 4 seconds), the commu-
nication delay itself, and a delay that reflects certain physical distances: (i) train length (typical
value: 400 m), (ii) braking distance (about 2500 m), (iii) margin for position measurement er-
rors (5 %). The latter is at most 50 m, if Eurobalises (a device that tells its exact position to a
train passing over it) are positioned no more than 1 km apart. For simplicity, we assume that
these distances sum up to 3000 m. The train travels this distance in 36 seconds. Thus, with
instant communication, 40 seconds would be the ultimate lower bound on the headway between
consecutive trains. In the case study, we have a closer look at the reliability of communication
needed for moving-block operation. GSM-R may fail to establish a connection, a connection may
get degraded or lost; during handover from one GSM radio cell to another messages may get
delayed. Under normal circumstances, the train reports the safe position of its head and tail at
fixed intervals, for example every 5 seconds. What happens if one or several of these reports get
lost? On the other hand, MAs need to be received by the train at similar intervals. What is the
probability that the train misses a movement authority?

To address these questions, we study an initial model which is based on the known guaran-
tees provided by GSM-R, i. e., we assume that the GSM-R network functions as specified in the
Euroradio specification [12, 27]. Later we will vary some of these assumptions. In particular, we
assume:

• The delay to establish a GSM-R connection is at most 5 seconds with 95% and at most

7



7.5 seconds with 99.9% probability. Delays of more than 7.5 seconds are regarded as con-
nection establishment errors.

• The end-to-end delay of a (short) message is at most 0.5 sec with 95%, at most 1.2 sec with
99% and at most 2.4 sec with 99.99% probability (see the illustration in figure 2).

• Handover takes place whenever the train passes from one GSM radio cell to another. As
ETCS is intended to work with train speeds up to 500 km/h, we take at first a pessimistic
assumption on the time between handovers. The mean distance between handovers is spec-
ified to be 7 km; this leads to a mean time between cell handovers of 50 seconds. The
communication break during handover lasts at most 0.3 sec.

• From time to time, the train may pass an area where communication is degraded and fre-
quent transmission errors occur. These periods are more than 7 seconds apart with 95%
probability. A degraded period is required to be shorter than 1 second with 95% probability.

• A connection loss has a probability ≤ 10−4 per hour. It shall be detected within 1 sec.

With respect to the train-specific behavior, we adhere to the following assumptions as put forward
in [13, 24]:

• A passenger train completes an integrity check within 4 seconds; it reports the outcome and
its position to the RBC at most once in 5 seconds.

• A typical train trip has a duration of 1 hour.

We view all the above properties as constraints to be met by the environment in which a level 3
train operates. This view can be seen as an application of the design-by-contract paradigm [22, 3],
in the sense that the ETCS system is required to work properly if these constraints are met (or
outbalanced). The question then remains what specific guarantees can be distilled from these
assumptions. We intend to check whether it is possible that trains run at 300 km/h with only
a small headway, for example 1 minute. In particular, we want to find answers to the following
questions:

• The probability p that a message is transmitted successfully has to be at least 99.95%.
This figure is based on the availability requirement of [12]. As parts of the communication
delay are distributed stochastically, the success probability depends on the time frame t we
allow as maximal communication delay. Recall that the minimal headway with (hypothetic)
instant communication is 40 seconds. With a 1 minute headway in mind, the question is: Is
the probability p ≥ 99.95% for t = 20 seconds?

• Even if 20 seconds lead to p being in the range required above (≥ 99.95), it is still not obvious
that this also enables multiple trains to run at a headway of 1 minute during a complete
trip. We therefore also consider the question: What is the probability that two trains (with
a small headway) run for a full hour without ever braking or stopping?

3.2 The StoChart model

In our recent paper [16], we have modeled the ETCS case study using StoCharts. We construct
the models used in the experiment from two components: a sender and a receiver. In Section 4,
we will see how the sender and receiver are composed to answer the questions above.

Figure 3 shows the sender model for a train. In node Reporting position, a position report is
prepared every 5 seconds, indicated by the after edge with a deterministic delay. It is sent as soon
as possible, if the sender assumes there is a connection to the receiver. The node Connection status
just stores the information the sender has about the connection: it is either disconnected (the
initial node, where it tries to establish a connection by sending event try), connected normally or
involved in a cell handover.

8



no connection
on entry / try

connected cell handover

h_start /

h_end /

connect /

detect
connection loss /

position
report ready

position
report sent

[in(connected)] / transmitafter(DET[5 sec])

connection fails /

Sender

Reporting position

Connection status

Figure 3: The sender model

There are several causes for delay and stochasticity in the communication protocol between
sender and receiver. We have decided to incorporate these delays into the receiver model, while
the sender model is reactive, waiting for feedback from the receiver. For example, to model the
establishment phase for a radio connection, the receiver model includes after(. . .) operators and
sends a message back to the sender system when the connection is established. Alternatively,
we could have split the communication characteristics from the receiver, and let the sender and
receiver interact through a transmission medium submodel.

Figure 4 shows the receiver model together with the delays. When the sender tries to establish
a connection with the receiver (by sending event try), the connection establishment delay starts.
It is guaranteed to be at most 5 seconds with 95% probability and at most 7.5 seconds with
another 4.9%. We have modeled this guarantee using two deterministic delays, one of length
5 sec (on the edge leaving node connecting 1), the other one of length 2.5. Alternatively, we could
have modelled it using a single more complex distribution, similar to the cumulative distribution
function in figure 2.

The node correct contains as a subchart the example StoChart of figure 1; this is indicated
by the @. This subchart models the communication delay and cell handover.

To this basic model of normal operation, we have added two more possibilities of perturbations:
(i) Periods of frequent transmission errors may occur (as described above), making it impossible
to correct errors in the received bitstream. In our model, this is reflected by node error burst.
Both the beginning and the end of the error burst period are modeled by exponential delays, as
the errors occur stochastically. The mean times of the relevant delays are chosen as to meet the
requirements given above. (ii) All other failure types are subsumed under connection loss, which
is required to happen at most 10−4 times per hour. We have modeled this by an exponential delay
with an average of 104 hours. The sender notices the connection loss with a delay; this is modeled
by waiting in node undetected connection loss for 1 second.

3.3 The MoDeST model and translation issues

The basic recipe for translating the StoChart model into MoDeST code is not difficult.

Overall structure. Based on the semantic model of StoCharts (Section 2.1), we model the
collection of StoCharts as a parallel composition of processes in MoDeST in a way that each
substate of an and -state is a separate parallel MoDeST process. So, for example, the sender
StoChart is translated to two parallel processes.

1 proc Sender ()

2 { :: Reporting_Position ()
3 :: Connection_Status ()
4 }

9



@correct error burst

after(EXP[136 sec])

after(EXP[0.33 sec])

no connection

try /

after(EXP
[10 000 h])

undetected
connection lossafter(DET[1 sec]) /

detect connection loss

connecting 1 connecting 2 PP
after(DET[2.5 sec])

0.02 / connection fails

after(DET[5 sec]) 0.05

0.95 / connect 0.98 / connect

Figure 4: The receiver model, including error models

The top-level view on the resulting code is as follows:

1 par

2 { :: Sender ()
3 :: Receiver ()

4 }

The communication between the StoChart-nodes on the level of MoDeST processes is per-
formed via shared variables in a straightforward fashion.

Individual processes. Each process in the translation is generated in the following way. Each
basic node of the StoChart is translated to a state in the automata view on MoDeST. In this
way we obtain a local transition system for each and -substate of a StoChart. This transition
system can be directly encoded into MoDeST-code, because:

• MoDeST provides native support for nondeterministic and probabilistic choice.

• Drawing samples from arbitrary distributions is also supported in MoDeST directly.

• The action synchronization mechanisms of MoDeST and StoCharts are virtually the
same, except that the distinction between input and output is not made in MoDeST.

• Time delays are modeled using clocks. For example, the statement after(DET[5 sec]) is
modeled as:

1 clock x=0;
2 when (x==5) ...

• Random delays such as after(EXP[5 sec]) are be modeled as:

1 clock x=0;
2 float y=Exponential(1/5);
3 when (x==y) ...

4

• Each pair of StoChart input/output actions “a/b” is translated into a sequence of Mo-

DeST actions “a;b”.

In this way, the code example at the end of section 2.2 is the translation of basic node “connecting
1” in figure 4 (after renaming “C” into “connecting”).

In case the guard of a transition is a state predicate of another process, we model it using shared
memory communication mechanism. For instance, the translation of the predicate “in(connected)”
is contained in the following fragment for node “Reporting position”.

10



1 process Reporting_Position()

2 { clock x=0;
3 when(x==5) tau {= x=0 =};
4 do{::par{::when (connected==1) transmit

5 ::when (x==5) tau {= x=0 =}
6 }

7 }
8 }

In this code fragment, “connected” is a shared variable set to 1 by the parallel process correspond-
ing to the “Connection status” state. If this variable is set to 1, then the train position report can
be transmitted (the action “transmit” is enabled). But this transmission only occurs if the parallel
process for the receiver is able to communicate synchronously by performing the same “transmit”
action. Furthermore, the code ensures that a report can be transmitted every 5 seconds.

As an optimization, we transform tail recursion into “do” loops, which are implemented more
efficiently in MoDeST than recursive process calls.

Border-crossing transitions. One of the main challenges to overcome during the translation is
posed by border-crossing transitions typical for statecharts. To reflect their effect properly we use
the exception mechanism of MoDeST (cf. Section 2.2). We combine exceptions with parallelism
and obtain a powerful mechanism, somewhat similar to the disrupt mechanism in LOTOS [6].
The abstract mechanism looks as follows:

1 try{
2 par{::P()
3 ::disrupting_event1; throw exception_event1

4 }
5 }

6 catch exception_event1{
7 <do something>

8 }

In this example the “disrupting event1” can occur at any state of process P() (because of the
interleaving semantics of parallel composition). As the result, the execution of P() is aborted
and control is transferred to the “catch” body. In order to model the same behavior without
exceptions, one would have to add an alternative composition to every state of process P(), which
would lead to error-prone code blowup.

We use this mechanism several times in the translation. For example, the “Connection status”
state is translated in the following way:

1 process Connection_status()
2 { do{::

3 do{::action_try;
4 alt{:: connection_fails
5 :: connect {= connected=1 =}; break

6 }
7 };

8
9 // Connected

10 try{
11 par{::do{::h_start {= connected=0 =};
12 h_end {= connected=1 =}

13 }
14 :: detect_connection_loss {= connected=0 =};

15 throw retry
16 }
17 }

18 catch (retry){tau}
19 }

20 }

The whole process is an endless “do” loop that consists of two parts: establishing a connection,
and maintaining it (detecting cell handovers and connection losses). The first part is rather trivial:
we try to establish a connection (action “action try”), and then wait for the result. Once we get
a handshake by the “connect” action, we set the shared variable “connected” to 1 and go to the
second part; once we get a handshake by “connection fails” action, we repeat the “action try”.

11



The second part demonstrates the use of the exception mechanism. We execute the process
that checks for cell handovers (actions “h start” and “h end”, which correspond to cell handover
start and end, respectively). At any state of this process “detect connection loss” action may
occur (because of the interleaving semantics of parallel composition). After that the exception
“retry” is thrown immediately.

In order to translate the receiver StoChart we need to use several levels of exceptions, in the
form of cascading exceptions. The problem here is that the “normal flow” of the receiver process
can be disrupted by three types of events:

• cell handover,

• error burst,

• undetected connection loss.

The priority of the disrupts is in the presented order, i. e. a connection loss can interrupt both the
cell handover and the error burst procedures, and an error burst can interrupt a cell handover.
We use a cascading exception scheme, similar to the following, to model this:

1 try{

2 par{::try{
3 par{::P()

4 ::disrupting_event1; throw exception_event1
5 }

6 }
7 catch exception_event1{
8 <do something1>

9 }
10 ::disrupting_event2; throw exception_event2

11 }
12 }

13 catch exception_event2{
14 <do something2>
15 }

Here we see that the inner try/catch construction (lines 2–9) is identical to the one-level exception
handling example presented above.

On exit triggers. Yet another challenge lies in modeling the “on exit” construction of Sto-

Charts, especially in the situation with exceptions. This is due to the fact that, unlike in C++,
there are neither destructors, nor automatic destructor invocations in MoDeST. Therefore we
propose the following solution. We remember the fact that we have to do an exit transition by
setting a flag and check it when we handle the exception. For example:

1 process Transmit_with_Cell_Handover()

2 { clock x; float y;
3 do{::

4 try{ tau {= y=Exponential(1.0/50), x=0 =};
5 par{::Transmit()
6 ::when(x==y) throw cell_handover

7 }
8 }

9 catch(cell_handover){
10 h_start {= x=0, handover=1 =};

11 when (x==0.3) h_end {= handover=0 =}
12 }
13 }

14 }
15
16 process Transmit_with_Cell_Handover_and_Error_Burst()
17 { clock x; float y;
18 do{::

19 try{ tau {= y=Exponential(1.0/136), x=0 =};
20 par{::Transmit_with_Cell_Handover()

21 ::when(x==y) throw error_burst
22 }

23 }
24 catch(error_burst){
25 alt{::when (handover==1)

12



26 h_end {= handover=0 =}

27 ::when (handover==0) tau
28 };
29 tau {= y=Exponential(1.0/0.33), x=0 =};

30 when (x==y) tau
31 }

32 }
33 }

In this example the first process sets the flag “handover” whenever it is in the cell handover state
(lines 10–11), and the second process checks this flag, and executes “h end” if needed (lines 25–26).
This check should also be present in all outer exception handling routines.

In this section we outlined the translation procedure based on the ETCS example, which
contains all important features of StoCharts. This semantics-by-example still awaits a rigid
formal proof. We are confident that this can be achieved, as the numerical analysis in the following
section yields consistent results.

4 Analysis

4.1 Tools

Our original case study [16] used the tool ProVer for simulation-based analysis of a hand-crafted
model of the ETCS, derived from the StoChart design. ProVer is a tool that uses discrete
event simulation to estimate probabilities of interesting system behaviours, similar to various
other tools for GSMP analysis. ProVer is, however, particular in the manner the behaviour-of-
interest is specified by the user. It allows to specify two types of requirements. First, ProVer

can estimate the probability with which certain path-based system requirements are satisfied by
the model. These requirements are stated as path properties in the stochastic temporal logic CSL
[2]. ProVer’s output is then a likelihood (and an error estimate) with which the path formula is
estimated to be satisfied. Second, ProVer can also be used similar to a model checker to verify
whether a CSL state property is met by the model. ProVer’s output is then either “yes” or “no”
(and a confidence).

The Motor/Möbius tool tandem allows to perform discrete event simulation of MoDeST

specifications. During the simulation the system time advances in variable steps, as long as no
activity is present. As a result we get an execution trace containing the time-stamped actions the
system performs. Different execution traces are different from each other due to the difference in
the random values drawn by the tool in accordance to the probability distributions used in the
specification. In this way a sufficiently large number of execution traces allows one to quantitatively
estimate the conditions under which certain actions occur in the system.

In this case study we estimated the mean time between subsequent occurrences of “receive”
actions performed by the system. Therefore, from the execution traces we distilled the time stamps
of “receive” actions. Further, we used a python script to analyze this list of time stamps and to
calculate the probability distributions for the delays between consecutive “receive” actions.

We considered it as a very useful sanity-check to investigate in how far the two resulting models
(both derived via manual transformation steps – though on different levels) fed into different sim-
ulation infrastructures (ProVer and Motor/Möbius) lead to identical or diverging simulation
results. So, we made ProVer generate a file of runs in the same format as the Motor/Möbius

output, and used the same python script to analyze them. The results for the combined use of
ProVer and python are also provided below, together with the results optained via MoDeST.

4.2 First Experiment: Reliability of Communication

In a first setting, we investigate the communication reliability. The model we use consists of a single
sender (say, a train) and a single receiver (say, a RBC), as shown in figure 5 (in the syntax of a UML
deployment diagram: informally speaking, the 3D boxes represent hardware components that run
the software drawn as a box with handles inside them. A line between hardware components

13



Sender Receiver

Train Radio Block Center

Figure 5: Model for the first experiment

Sender
Receiver

Leading Train Radio Block Center

Following Train

ReceiverSender’

Figure 6: Model for the second experiment

indicates a communication link.). The behaviors of train/sender and RBC/receiver are as shown
in the StoCharts. The train generates a position report every 5 seconds and sends it off to the
RBC once it assumes the connection is working. We have checked whether the communication is
reliable enough, depending on the delay until the reception of a position report. We assume that
in the initial state, a position report has just been generated, sent and received without delay (an
over-approximation of the best-case behavior for the preceding message).

We used the tool chains to estimate the probability p that the communication succeeds for
some values of t. Table 1 gives the estimates for the three combinations of tools we have used. We
can see that the three tool combinations produce (approximately) the same results.

t ProVer ProVer MoDeST

+ python + python

5 sec 0 0 0
10 sec 0.98267±9 0.98271± 6 0.9840
15 sec 0.999700±9 0.999688± 8 0.9997
20 sec 0.9999944±6 0.9999950±10 0.9999

Table 1: Experiment 1 results

We can see that for t = 15 seconds, the estimated communication reliability is is large enough.
As this is an estimate, the actual value may be just below the desired 99.95%, but ProVer can
help us out here. we have used the tool to check the statement: “The probability that the message
is received within 15 seconds is ≥ 0.9995”, stated as a formula in the input language of ProVer.
ProVer then affirmed that the statement is true with a confidence > 0.9999.

4.3 Second Experiment: Delay Probability

Even if a single communication is reliable enough, it may happen too often that communication
will break during a longer trip. To check for this, we have constructed a model consisting of two
successive trains running at 300 km/h. The leading train sends a position and integrity report
to the RBC, which in turn sends a movement authority to the following train, as illustrated
in figure 6. The second train should receive a movement authority within a short time after a
position report is generated, to avoid that it needs to brake. Unfortunately, it is difficult to measure
(using our tools) the age of the information on which the movement authority received is based.
Therefore, we measure the time between two successive receptions of a movement authority. A
simple calculation (based on the fact that the communication channels have bounded capacity, and
that a newer message overwrites an older one) shows that if two receptions lie away ∆t seconds,

14



the latter is based on information not older than ∆t + 7.4 seconds. So, in addition to the minimal
headway for instant communication (40 seconds), we allow for another 7.4 seconds headway based
on the analysis method. Therefore, we have chosen to analyze the situation where the headway
between two trains is 62.4 seconds. What is the probability that the following train has to brake
during this trip? So, what is the probability p that the time ∆t between two successive movement
authorities received by the following train is more than 15 seconds at least once? Further, what
is the probability that it has to stop? (At 300 km/h, a train needs about one minute to stop.)
So, what is the probability p that ∆t > 15 + 60 seconds at least once? ProVer and MoDeST

provide us with the results shown in table 2.

max∆t ProVer ProVer MoDeST

+ python + python

> 5 sec 1 1 1
> 10 sec 0.9562± 9 0.9551±13 0.9338±16
> 15 sec 0.101± 2 0.1006± 9 0.0784±18
> 20 sec 0.0036± 4 0.0041± 4 0.0023± 3
> 25 sec 0.00034±11 0.00029±11 0.00004± 4
> 75 sec 0 0 0

Table 2: Experiment 2 results: Probability that ∆t is > the indicated time at least once during a
1 hour trip

We can see that according to both tools, about one train out of 9 or 10 would have to brake.
The simulations did not produce a single run where a train would need to stop, so this probability
is too small to be measured.

The numbers obtained via the three evaluation methods are reasonably close to each other.
This indicates that the translation of these StoCharts to MoDeST is faithful. Earlier in the
process, the ProVer + python analysis also served as a kind of quantitative debugging tool: if
significant differences were detected between ProVer’s genuine analysis and the python scripts,
this was a strong indication of an error in the scripts.

4.4 Experiment Series: Parametric Analysis

The power of our MoDeST translation does not only lie in its mechanizability. The simple fact
that Möbius is a well-designed and well-supported modelling and analyis environment pays off.
We can use the parametric analysis facilities provided by Möbius to carry out an in-depth study
of the vulnerabilities of the ETCS case in a convenient way, using the experiment series support
of Möbius. We have varied the second experiment and checked the influence of the following four
parameters on the required headway:

Train speed. The trains in the above experiments ran at 300 km/h. ETCS should also be
able to handle trains running at 400 or 500 km/h. (Please note that the train speed also
influences the minimal headway for instant communication, which was 40 seconds in the
original experiment.)

Delay between position reports. The specification requires that a train sends a position re-
port at most once in 5 seconds. We also analyse the situation where the actual frequency is
lower (once in 10 or 30 seconds).

Connection loss probability. The specification requires that a connection loss has a probability
≤ 10−4 per hour. However, some network operators are only willing to guarantee a lower
quality, so we also checked the probabilities 10−3 and 10−3.5 per hour.

Cell size. We have assumed that a cell has, on average, 7 km diameter. Other sources propose
other sizes, so we checked cell sizes 2 km, 6 km, and 10 km.

15



Figure 7: Comparison of two cumulative distribution functions for max∆t

There are in total 81 possible combinations of parameters. Möbius could be instructed to generate
sets of runs (for python) with one simple command. We have compared the outcomes of the 81
experiments and conclude the following:

• The connection loss probability has almost no influence. In a few experiments, we find
differences of up to 0.5 percentage points.

• Increasing the delay between position reports leads, more or less, to a proportional increase
of max∆t.

• The cell size and train speed are highly related. The reason is that they both influence the
expected delay between cell handovers in a similar way. Higher speeds and smaller cells lead
to more frequent cell handovers, which may lead to more missed communications.

For example, assuming a connection loss probability of 10−3 per hour and a delay between
position reports of 5 seconds, we get the following values for the probability that max∆t ≤ 15
sec:

Train speed
Cell size 300 km/h 400 km/h 500 km/h

2 km 0.742 0.581 0.413
6 km 0.956 0.927 0.901

10 km 0.977 0.963 0.956

The python analysis of an experiment can also be illustrated by a cumulative distribution function
that shows the probability that max ∆t is at most a given value. In figure 7, the solid line is the
cumulative distribution function for the experiment with cell size 10 km, and the dotted line is
the cdf for the experiment with cell size 2 km. In both experiments, the delay between position
reports was 5 sec, the connection loss probability was 10−3/h, and the train speed was 300 km/h.
The cdfs are discontinuous because the GSM-R transmission delay is modeled by a discontinuous
cdf (see figure 2). It reflects that we have modelled the the worst-case assumptions provided
according to the GSM-R specification, and the discontinuities in the assumptions propagate to the
guarantees provided by the ETCS system. If the service actually provided by GSM-R is better
(e. g. as indicated by the dotted line in figure 2), then the resulting service of the system will
be better, leading to some plot (to the left and) above the one shown in figure 7. Owed to our
design-by-contract apppoach, the resulting performance is guaranteed to be bounded by the plot,
as long as the input distribution satisfies the contractual assumptions.

16



5 Conclusion

This paper has elaborated on our efforts to define a translational semantics for StoCharts. The
semantics maps a collection of StoCharts to the MoDeST language. It enables mechanization
of the stochastic analysis of StoCharts, because MoDeST is connected to the discrete event
simulation engine of the Möbius toolset. Our efforts have focused on the translation of a re-
cent StoChart case study, modeling GSM-based communication in future European high speed
trains. The simulation results produced by the tools ProVer and Möbius only show insignifi-
cant differences, which can be seen as a sanity-check for our work. We have used the parametric
analysis features of Möbius to dive deeper into the different aspects of the ETCS case study. In
particular, our design-by-contract approach allows us to distill bounds on the reliability of the
ETCS case, instead of performing a case-by-case analysis.

The translational semantics reflects the hierarchical structure of a StoChart and covers all
interesting aspects of StoCharts, including a few challenging issues. In particular, we have
identified that the exception handling mechanism particular to MoDeST can be used to effectively
model border-crossing transitions. Based on the insight gained in this paper, we will strive for a
complete compositional translation from StoChart to MoDeST.

Acknowledgements. We are grateful to Gerald Luettgen (University of York), who pointed out
the resemblance of exception handling and border-crossing statechart transitions.

References

[1] R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science, 126:183–235,
1994.

[2] Christel Baier, Boudewijn R. Haverkort, Holger Hermanns, and Joost-Pieter Katoen. Model-
checking algorithms for continuous-time Markov chains. IEEE Transactions on Software
Engineering, 29(6):524–541, 2003.

[3] A. Beugnard, J.-M. Jézéquel, and N. Plouzeau. Making components contract aware. Com-
puter, 32(7):38–45, 1999.

[4] H. C. Bohnenkamp, H. Hermanns, R. Klaren, A. Mader, and Y. S. Usenko. Synthesis and
stochastic assessment of schedules for lacquer production. In First international conference on
the quantitative evaluation of systems : QEST 2004 ; proceedings, pages 28–37, Los Alamitos,
CA, 2004. IEEE Computer Society.

[5] Henrik Bohnenkamp, Holger Hermanns, Joost-Pieter Katoen, and Ric Klaren. The Modest
modeling tool and its implementation. In Peter Kemper and William H. Sanders, editors,
Computer performance evaluation : modelling techniques and tools ; . . . TOOLS, volume
2794 of LNCS, pages 116–133, Berlin, 2003. Springer.

[6] Tommaso Bolognesi and Ed Brinksma. Introduction to the ISO specification language LO-
TOS. Computer networks and ISDN systems, 14(1):25–59, 1987.

[7] Pedro R. D’Argenio. Algebras and automata for timed and stochastic systems. PhD thesis,
Universiteit Twente, Enschede, November 1999. ISSN 1381–3617.

[8] Pedro R. D’Argenio, Holger Hermanns, Joost-Pieter Katoen, and Ric Klaren. MoDeST :
a modelling and description language for stochastic timed systems. In Luca de Alfaro and
Stephen Gilmore, editors, Process Algebra and Probabilistic Methods. Performance Modelling
and Verification: Joint International Workshop, PAPM-PROBMIV, volume 2165 of LNCS,
pages 87–104, Berlin, 2001. Springer.

[9] D. D. Deavours and W. H. Sanders. Möbius : Framework and atomic models. In Proc. 9th
Int. Workshop on Petri Nets and Performance Models (PNPM ’01), pages 251–260. IEEE,
2001.

17



[10] Frank Dehne, Henk van de Zandschulp, and Roel Wieringa. Toolkit for conceptual modeling
(TCM). http://www.cs.utwente.nl/∼tcm/.

[11] Rik Eshuis and Roel Wieringa. Requirements-level semantics for UML statecharts. In Scott F.
Smith and Carolyn L. Talcott, editors, Formal Methods for Open Object-Based Distributed
Systems IV : . . . FMOODS, pages 121–140, Boston, 2000. Kluwer Academic Publishers.

[12] Euroradio FFFIS : class 1 requirements. http://www.aeif.org/db/docs/ccm/

SUBSET-052 v200.PDF, 2000.

[13] Functional requirement specifications : train integrity monitoring system. http://

www.aeif.org/db/docs/ccm/EEIG-TIMS-Document.doc, 2000.

[14] C. A. R. Hoare. Communicating sequential processes. Prentice-Hall international series in
computer science. Prentice-Hall, Englewood Cliffs, NJ, 1985.

[15] Gerald J. Holzmann. The SPIN model checker : primer and reference manual. Addison-
Wesley, Boston, 2004.

[16] David N. Jansen and Holger Hermanns. Dependability checking with stocharts: Is train radio
reliable enough for trains? In First international conference on the quantitative evaluation of
systems : QEST 2004 ; proceedings, pages 250–259, Los Alamitos, CA, 2004. IEEE Computer
Society.

[17] David N. Jansen, Holger Hermanns, and Joost-Pieter Katoen. A QoS-oriented extension of
UML statecharts. In Perdita Stevens, Jon Whittle, and Grady Booch, editors, �UML� 2003 :
the unified modeling language, volume 2863 of LNCS, pages 76–91. Springer, 2003.

[18] David Nicolaas Jansen. Extensions of statecharts with probability, time, and stochastic timing.
PhD thesis, Universiteit Twente, Inmarks, Bern, October 2003. ISBN 3–9522850–0–5.

[19] N. Lynch and F. Vaandrager. Forward and backward simulations : II. timing-based systems.
Information and Computation, 128:1–25, 1996.

[20] Nancy A. Lynch and Mark R. Tuttle. An introduction to input/output automata. CWI
quarterly, pages 219–246, 1989.

[21] Jeff Magee and Jeff Kramer. Concurrency : State Models and Java Programs. Wiley, Chich-
ester, 1999.

[22] Bertrand Meyer. Applying “design by contract”. Computer, 25(10):40–51, October 1992.

[23] OMG unified modeling language specification. Object Management Group, Needham, MA,
version 1.5 edition, March 2003.

[24] Performance requirements for interoperability. http://www.aeif.org/db/docs/ccm/

SUBSET-041 v200.PDF, March 2000.

[25] Roberto Segala and Nancy Lynch. Probabilistic simulations for probabilistic processes. Nordic
Journal of Computing, 2(2):250–273, 1995.

[26] H̊akan L. S. Younes and Reid G. Simmons. Probabilistic verification of discrete event systems
using acceptance sampling. In Ed Brinksma and Kim Guldstrand Larsen, editors, Computer
aided verification : 14th intl. conference, CAV, volume 2404 of LNCS, pages 223–235, Berlin,
2002. Springer.

[27] Armin Zimmermann and Günter Hommel. A train control system case study in model-based
real time system design. In International parallel and distributed processing symposium, page
118b. IEEE, 2003.

18


