
AVACS – Automatic Verification and Analysis of

Complex Systems

REPORTS
of SFB/TR 14 AVACS

Editors: Board of SFB/TR 14 AVACS

Slicing CSP-OZ Specifications for Verification

by

Ingo Brückner Heike Wehrheim

AVACS Technical Report No. 7
November 2005
ISSN: 1860-9821

Publisher: Sonderforschungsbereich/Transregio 14 AVACS
(Automatic Verification and Analysis of Complex Systems)

Editors: Bernd Becker, Werner Damm, Martin Fränzle, Ernst-Rüdiger Olderog,
Andreas Podelski, Reinhard Wilhelm

ATRs (AVACS Technical Reports) are freely downloadable from www.avacs.org

Copyright c© November 2005 by the author(s)

Author(s) contact: Heike Wehrheim (hw@avacs.org).

Slicing CSP-OZ Specifications for Verification⋆

Ingo Brückner1 and Heike Wehrheim2

1Universität Oldenburg, Department Informatik, 26111 Oldenburg, Germany
ingo.brueckner@informatik.uni-oldenburg.de

2Universität Paderborn, Institut für Informatik 33098 Paderborn, Germany
wehrheim@uni-paderborn.de

Abstract. Model checking specifications with complex data and be-
haviour descriptions often fails due to the large state space to be pro-
cessed. In this paper we propose a technique for reducing such specifica-
tions (with respect to certain properties under interest) before verifica-
tion. The method is an adaption of the slicing technique from program
analysis to the area of integrated formal notations and temporal logic
properties. It solely operates on the syntactic structure of the specifica-
tion which is usually significantly smaller than its state space. We show
how to build a reduced specification via the construction of a so called
program dependence graph, and prove correctness of the technique with
respect to a projection relationship between full and reduced specifica-
tion. The reduction thus preserves all properties formulated in temporal
logics which are invariant under stuttering, as for instance LTL−X .

1 Introduction

Modelling complex systems usually involves the description of different views.
In the UML this is facilitated by providing designers with a large number of
different diagram types for modelling various aspects of systems. In the area
of formal modelling notations integrated formal methods allow for a convenient
specification of different views. Integrated formalisms combine different existing
notations while still giving a semantics to the combination and thus preserving
the formal rigour in a design. Models of complex systems in integrated spec-
ification formalisms usually contain views describing state-based aspects plus
views describing the dynamic behaviour. A number of such integrations have
been proposed in recent years [6, 26, 18, 23, 21, 14, 20, 7, 12]. They often combine
state-based notations like Z or B with process algebras like CCS or CSP.

In this paper, we will be concerned with verifying specifications written in an
integrated notation. Applications of model checking techniques often fail for such
specifications due to the large amount of data (coming from the state-based side)

⋆ This work was partly supported by the German Research Council (DFG) as part
of the Transregional Collaborative Research Center “Automatic Verification and
Analysis of Complex Systems” (SFB/TR 14 AVACS). See www.avacs.org for more
information. A shorter version of this paper, [1], was presented at ICFEM2005.

combined with the large number of interleavings of parallel components (com-
ing from the process algebra side). Consequently, the development of techniques
for avoiding the state explosion problem is even more compelling for integrated
formalisms. Here, we propose a method for reducing the specification (and as
a consequence its state space) by removing all those parts which are irrelevant
for the validity of a particular property under interest. The technique for de-
termining relevant (or irrelevant) parts is an adaption of the slicing technique
from program analysis to formal specifications. Slicing has originally been in-
troduced by Weiser [25] to reduce programs for debugging. It basically involves
the construction of a program dependence graph which precisely reflects the de-
pendencies in a program. On this graph it is possible to determine the parts
of a program which might affect the value of a variable at a certain program
point (the slicing criterion). The irrelevant parts can then be sliced away (for an
overview of slicing techniques see [22]). A similar principle is applied in hardware
verification (under the name cone of influence reduction [13, 5]), where the parts
of a circuit model are calculated which might affect a certain property. In soft-
ware verification slicing has for instance been applied to Java [8], PROMELA
(the input language of the SPIN model checker [15]), and SAL [24]. Being a static
analysis technique slicing just operates on the syntactic level of the program, and
a reduction of this can substantially facilitate the following model checking.

This work builds on previous ideas for slicing Object-Z specifications [2].
Here, we present a slicing technique for an integrated specification language.
The formalism, called CSP-OZ [6], is a combination of the process algebra CSP
[9] with the state-based formalism Object-Z [19]. For this notation we show
how to construct graphs reflecting the mutual dependencies in a specification,
in particular between the Object-Z and the CSP part. The slicing criteria are
temporal logic formulae over atomic propositions (speaking about the state of the
Object-Z part) and events (speaking about occurrence of operations of the CSP
part). Instead of looking at one particular logic, we take a more general approach.
We show that our reduction preserves properties formulated in any (linear-time)
logic which is invariant under stuttering, i.e. which cannot distinguish between
runs of a system which are equivalent up to some stuttering steps (defined by
a set of irrelevant atomic propositions and events). This is obtained by proving
that the runs of the reduced specification are projections of the runs of the full
specification, projection being a particular form of stuttering. A logic fulfilling
the requirements is for instance LTL−X (linear time temporal logic without Next
operator) or the state/event based interval logic proposed in [2].

The paper is structured as follows. The next section introduces CSP-OZ by
means of a small example and moreover defines a Kripke structure semantics
for CSP-OZ. In section 3 we present the dependence graph construction and the
slicing algorithm, both illustrated on the running example. The slicing algorithm
will be proven correct with respect to preservation of the property under interest
in section 4. The last section concludes and shortly discusses related work.

2 CSP-OZ Specifications: An Example

For illustrating our approach we use a CSP-OZ specification of an air condition
system. It can operate in two modes, either heating or cooling. Initially the air
condition is off. When it is switched on (workswitch), it starts to run. While
running, the air condition either heats or cools the room and simultaneously
allows the user to switch the mode (modeswitch), refill fuel (refill) or switch it
off again. Cooling or heating is modelled by a consumption of one unit of fuel
(consume) and an emission of hot or cold air (dtemp). For the specification we
first define the mode of operating and a type for the fuel.

Mode ::= heat | cool Fuel == 0..100

AC
chan workswitch, consume, off chan modeswitch : [m? : Mode]
chan refill : [f ? : Fuel] chan dtemp : [t ! : Mode]
chan level : [f ! : Fuel]

main = workswitch → On
On = (Operate ||| Work) # main
Work = consume → dtemp → level → Work

2 off → SKIP

Operate = modeswitch → Operate
2 refill → Operate
2 workswitch → SKIP

work : B

mode : Mode; fuel : Fuel

Init

¬work
mode = heat

effect workswitch
∆(work)

work ′ = ¬work

enable consume

work ∧ fuel > 5

effect consume
∆(fuel)

fuel ′ = fuel − 1

effect modeswitch
∆(mode); m? : Mode

mode ′ = m?

effect dtemp
t ! : Mode

t ! = mode

effect level
f ! : Fuel

f ! = fuel

enable off

¬work

enable refill

fuel < 100

effect refill
∆(fuel); f ? : Fuel

fuel ′ = min(fuel + f ?, 100)

The first part of the class defines its interface towards the environment. The
next part specifies its dynamic behaviour, i.e. the allowed ordering of method
execution. It is defined via a set of CSP process equations. The operators appear-
ing here are prefixing → (sequencing), sequential composition #, interleaving |||
(parallel composition with no synchronisation) and external choice 2. The third
part of a CSP-OZ class describes the attributes of the class and the methods.
For every method we might have an enabling schema fixing a guard for the

method execution (enabling schemas equivalent to true are left out) and an ef-
fect schema describing the effect of a method upon execution. For instance, for
method consume the enabling schema tells us that the air condition has to be
on and a minimal amount of fuel is necessary for consume to take place, and
that upon execution one unit of fuel is consumed. The method level on the other
hand is always enabled, it just displays the current level of fuel.

The semantics of such specifications is defined in terms of labelled Kripke
structures. In contrast to ordinary Kripke structures, transitions are labelled
with events. This allows us to also use temporal logics for property specification
which talk about execution of events.

Definition 1. Let AP be a non-empty set of atomic propositions, E an alphabet
of events (consisting of method names plus values of parameters).

An (event-)labelled Kripke structure K = (S ,S0,→,L) over AP and E con-
sists of a finite set of states S , a set of initial states S0 ⊆ S, a transition relation
→⊆ S × E × S and a labelling function L : S → 2AP .

For our example atomic propositions might for instance be mode = cool or
fuel > 5. The Kripke structure for a CSP-OZ class is derived in two steps: first,
we separately compute the semantics of the CSP and the Object-Z part. In a
second step, we combine the Kripke structure of the components by parallel
composition. In the following we assume a global set of atomic propositions AP
and events E which are built over method names m ∈ M , i.e. an event e has the
form m.i .o where m is the name of a method and i and o are (potential) values
for input and output parameters. The transition relation for the CSP part is
computed via the operational semantics of CSP [17].

Definition 2. The Kripke structure semantics of the CSP part main of a CSP-
OZ class is the labelled Kripke structure KCSP = (LCSP , {main},→CSP ,LCSP)
with LCSP being the set of all CSP terms, →CSP the transition relation derived
via the operational semantics of CSP and LCSP (P) = AP for all P ∈ LCSP .

In the states of the Kripke structure for the CSP part all atomic propositions
hold since the CSP part makes no restrictions on values of attributes of the class.

Definition 3. The Kripke structure semantics of the Object-Z part
C = (State, Init , (enable m)m∈M , (effect m)m∈M) of a CSP-OZ class is the
labelled Kripke structure KOZ = (State, Init ,→OZ ,LOZ) with the transition re-
lation →OZ= {(s ,m.i .o, s ′) | enable m(s , i) ∧ effect m(s , i , o, s ′)}, and the
labelling function LOZ (s) = {p ∈ AP | s |= p}.

The states of the Kripke structure are simply the set of bindings of the state
schema. These two Kripke structures are then combined via parallel composi-
tion. In the following we assume the alphabet of the CSP part and the set of
methods in the Object-Z part to be equal, thus synchronisation takes places on
all methods. Only one event remains which is executed by the CSP part alone,
the invisible event τ which might arise out of internal choices in CSP processes.

Definition 4. The parallel composition of two labelled Kripke structures 1 Ki =
(Si ,S0,i ,→i ,Li), i ∈ {1, 2} over the same set of atomic propositions AP and
events E, K1 || K2, is the Kripke structure K = (S ,S0,→,L) with

– S = S1 × S2, S0 = S0,1 × S0,2,

– → =

{

((s1, s2), e, (s ′1, s
′
2))

∣

∣

∣

∣

(s1 −e→1
s ′1 ∧ s2 −e→2

s ′2)
∨ (s1 −τ→1

s ′1 ∧ s ′2 = s2) ∨ (s2 −τ→2
s ′2 ∧ s ′1 = s1)

}

– L(s) = L(s1) ∩ L(s2), where s = (s1, s2).

For describing properties of CSP-OZ classes we can now use any temporal logic
which can be interpreted on labelled Kripke structures. For the purpose of this
paper we assume the logic to be a linear-time logic, i.e. which is interpreted
on the paths without considering the branching structure. We furthermore only
consider paths which are fair [5] with respect to a set of events.

Definition 5. Let K = (S ,S0,−→,L) be a Kripke structure. An infinite sequence
of events and states s0e1s2e3s4 . . . is a path of the Kripke structure iff s0 ∈ S0

and (si , ei+1, si+2) ∈→ holds for all i ≥ 0, i even.

A path is fair with respect to a set of events E ′ ⊆ E (or E ′-fair) iff inf (π) ∩
E ′ 6= ∅ where inf (π) = {e ∈ E | ∃ infinitely many i ∈ N : ei = e}.

Here, we will not introduce one particular logic, but instead only assume that our
logic is invariant under projection, i.e. that it cannot distinguish paths where one
is a projection of the other onto some set of atomic propositions and events of
interest. A precise definition of projection is given in section 4. A temporal logic
fulfilling this requirement is for instance the next-less part of LTL or the state-
event interval logic presented in [2]. For our example we use the former logic.
One property of interest for our air condition specification could for instance be
whether the amount of fuel is always greater than 5 when the air condition is on
(which in fact is not true): ϕ := 2(work ⇒ fuel > 5).

The main purpose of the technique proposed in this paper is to determine now
which part of the specification actually has to be considered when checking
for the property, i.e. whether it is possible to check the property on a reduced
specification S red such that the following holds (where S |= ϕ stands for ”the
formula ϕ holds on the Kripke structure of the specification S”):

S |= ϕ iff S red |= ϕ

As we will see it is possible to omit both some of the attributes and some of the
methods of the air condition for checking our property.

1 Note that our definition is symmetric in general, while for the special case of parallel
composition of CSP and Object-Z Kripke structures we assume only the CSP side
to have τ transitions.

3 Slicing

Slicing means reducing a program or specification such that the reduced pro-
gram/specification only contains those parts of the full specification which can
influence a certain property under interest called the slicing criterion.

In order to determine these influences, slicing needs precise information about
dependencies between different parts of a program/specification. Such dependen-
cies are represented in a program (or system) dependence graph2. This section
explains the construction of program dependence graphs for CSP-OZ classes and
their slicing with respect to some temporal logic formula ϕ.

Control flow graph. In preparation for the construction of the program de-
pendence graph we first construct the specification’s control flow graph (CFG)
which represents the execution order of the specification’s schemas according to
the specification’s CSP processes. Starting with the start .main node, its nodes
(n ∈ N) and edges (−→ ⊆ N ×N) are derived from the syntactical elements of
the specification’s CSP part, based on an inductive definition for each CSP oper-
ator. Nodes either correspond to schemas of the Object-Z part (like enable m)
or to operators in the CSP part (like nodes interleave and uninterleave for op-
erator ||| or nodes extchoice and unextchoice for operator 2). We refrain from
giving a precise definition here. The result of this inductive definition for the first
two process definitions in our AC example specification can be seen in fig. 1.

interleaveenable workswitch

start .Onstart .main

effect workswitch

call .On

call .Workcall .Operate

.

ret .Operate ret .Work

uninterleave

seq

call .main

Fig. 1. Part of the control flow graph for the AC specification

Note, that we assume each syntactical CSP element and each associated CFG
node to have a unique name. This can, for example, be achieved by extending
their names by an index that represents the position of their textual occurrence
inside the specification. For sake of clarity we omit these indices here.

2 We stick to the word program, although we treat specifications.

Program dependence graph. The program dependence graph (PDG) represents
data and control dependencies between nodes of the CFG. Thus both graphs
have the same set of nodes (n ∈ N), but not the same set of edges. An edge
connects two nodes in the PDG if control or data dependencies exist between
these nodes according to the definitions given below. Before we continue with the
construction of the PDG we first introduce some abbreviations. When reasoning
about paths inside the CFG, we let pathCFG(n,n ′) denote the set of sequences of
CFG nodes that are visited when walking along CFG edges from node n to node
n ′. When we refer to the sets of variables appearing inside schemas associated to
PDG nodes, we let mod(n) denote the set of variables appearing in primed form
(those modified by the method of the node), ref(n) denote the set of variables
appearing in unprimed form (those referenced by the method of the node), and
vars(n) = mod(n) ∪ ref (n) denote the set of all variables inside the schema.

The further construction of the PDG starts with the introduction of control
dependence edges (⊆ N ×N). The idea behind these edges is to represent the
fact that an edge’s source node controls whether the target node will be executed.
In particular, a node cannot be control dependent on itself. We distinguish the
following types of control dependence edges:

– Control dependence due to nontrivial precondition exists between an enable

node and its effect node iff the enable schema is non-empty (i.e. not equiv-
alent to true).

– Control dependence due to external (resp. internal) choice exists between
an extch (resp. intch) node and its immediate CFG successors.

Additionally, some further control dependence edges are introduced in order to
achieve a well-formed graph:

– Call and termination edges exist between a call (resp. term) node and its
associated start (resp. ret) node.

– Start and return edges exist between a start (resp. ret) node and its imme-
diate CFG successor.

Finally, all previously defined (direct) control dependence edges are extended to
CFG successor nodes as long as they do not bypass existing control dependence
edges. The idea of this definition is to integrate indirectly dependent nodes (that
would otherwise be isolated) into the PDG.

– Indirect control dependence edges exist between two nodes n and n ′ iff
∃π ∈ pathCFG(n,n ′) : ∀m,m ′ ∈ ranπ : m m ′ ⇒ m = n

The idea of data dependence edges (; ⊆ N × N) is to represent the influence
that one node might have on a different node by modifying some variable that
the second node references. Therefore, the source node represents always an
effect schema, while the target node may also represent an enable schema.
We distinguish the following types of data dependence edges:

– Direct data dependence exists between two nodes n and n ′ iff there is a CFG
path between both nodes without any further modification of the relevant
variable: ∃ v ∈ (mod(n) ∩ ref(n ′)) , ∃π ∈ pathCFG(n,n ′) :

∀m ∈ ranπ : v ∈ mod(m) ⇒ (m = n ∨ m = n ′)

– Interference data dependence exists between two nodes n and n ′ iff both
nodes are located in different CFG branches attached to the same interleav-
ing operator: mod(n) ∩ ref(n ′) 6= ∅ ∧ ∃m = interleave :

∃π ∈ pathCFG(m,n) ∧ ∃π′ ∈ pathCFG(m,n ′) : ran π ∩ ranπ′ = {m}

= data dependency

= control dependency

modeswitch

start .Operate

interleave

call .Operatecall .Work

start .Work

start .On

ret .Operate ret .Work

call .main

uninterleave

seq

call .Operate

workswitch

skip

term.Operate

unextchoice

extchoice

refill

call .Operate

extchoice

consume off

dtemp

level

call .Work

unextchoice

term.Work

skip

start .main

workswitch

call .On

Fig. 2. Program dependence graph for the AC specification

The resulting program dependence graph for the AC specification is depicted in
fig. 2. Note, that two aspects of the PDG have been slightly modified in order to
achieve a more concise graphical representation without changing the outcome
of the slicing algorithm for the given example.

1. The separate nodes for enable and effect schemas have been combined
into one single node for each event.

2. Instead of explicitly drawing all control dependence edges originating from
one node to different target nodes, this set of edges is represented by a single
edge between the first node and a box around the set of target nodes.

Backward slice. For our purpose, slicing is used to determine that part of the
specification that is directly or indirectly relevant for the property to be verified.
Computation of this slice starts from the set of events Eϕ and the set of variables
Vϕ that appear directly in the given formula ϕ. Based on this slicing criterion
(Eϕ, Vϕ) we can determine the set of PDG nodes with direct influence on the
property under interest:

Nϕ= {n | mod(n) ∩ Vϕ 6= ∅} ∪ {n | ∃ e ∈ Eϕ : n = enable e}

From this initial set of nodes we compute the backward slice by a reachability
analysis of the PDG. The resulting set contains all nodes that lead via an ar-
bitrary number of control or data dependence edges to one of the nodes that
already are in Nϕ. Additional to all nodes from Nϕ, the backward slice contains
therefore also all PDG nodes with indirect influence on the given property, i.e.
it is the set of all relevant nodes for the specification slice:

N ′ = {n ′ ∈ N | ∃n ∈ Nϕ : n ′ (∪ ;)∗ n}

Thus relevant events are those associated to nodes from N ′

E ′ = {e | ∃n ∈ N ′ : n = enable ei ∨ n = effect ei}

and relevant variables are those associated to nodes from N ′: V ′ =
⋃

n∈N ′

vars(n).

Reduced specification. Having determined the sets E ′ and V ′ which might influ-
ence the property (formula) under interest the slice of a specification can next
be determined. In contrast to the original specification it contains

– only channels from E ′,
– only CSP process definitions that are projections (as defined in sect. 4, def. 8)

of CSP process definitions from the original specification onto E ′,
– inside the state schema only variables from V ′,
– inside the Init schema only predicates restricting variables from V ′, and
– only Object-Z schemas associated with events from E ′.

When slicing the class AC with respect to the formula ϕ : 2(work ⇒ fuel > 5),
i.e. Nϕ = {| workswitch, consume, refill |}3, the result is the following:

N ′ = N \ {effect modeswitch , effect dtemp, effect level}
E ′ = E \ {| modeswitch, dtemp, level |}, V ′ = V \ {mode}

This leads to the following specification slice:

AC
chan workswitch, consume, off chan refill : [f ? : Fuel]

3 Let {| M |} denote the set of events over the set of methods M .

main = workswitch → On
On = (Operate 9 Work) # main
Work = consume → Work

2 off → SKIP

Operate = Operate
2 refill → Operate
2 workswitch → SKIP

work : B; fuel : Fuel
Init

¬work

effect workswitch
∆(work)

work ′ = ¬work

enable consume

work ∧ fuel > 5

effect consume
∆(fuel)

fuel ′ = fuel − 1

enable off

¬work

enable refill

fuel < 100

effect refill
∆(fuel); f ? : Fuel

fuel ′ = min(fuel + f ?, 100)

The reductions achieved by applying our slicing algorithm to this example are:

1. Event modeswitch has been removed together with variable mode, which is
sensible, since the air condition’s mode (heating or cooling) does not have
any influence on the slicing criterion (property 2(work ⇒ fuel > 5)).

2. Events dtemp and level have been removed, which is also sensible, since
neither modelling the effect on the environment (dtemp) nor communicating
the current amount of fuel (level) influences the given property.

To summarise, the specification’s state space has not only been reduced with
respect to its control flow space (events dtemp, modeswitch and level) but also
with respect to its data state space (variable mode).

Note, that neither the original nor the sliced AC specification satisfies the
given property, so the verification result will be negative in both cases. Neverthe-
less, this is exactly what we wanted to achieve: A specification slice must satisfy
a slicing criterion if and only if the original specification does so.

In the next section we will show that our slicing algorithm guarantees this
outcome for any specification and any slicing criterion (formulated in a linear-
time stuttering invariant logic).

4 Correctness

In this section we show correctness of the slicing algorithm, i.e. we show that
the Kripke structure of the reduced specification is a projection of that of the
full specification. As a consequence, the property (and slicing criterion) ϕ then
holds on the full specification if and only if it holds on the reduced specification.

We start with the definition of a notion of projection that is used in the
actual correctness proof.

Projection of event-labelled Kripke structures. The task of slicing is to compute
a reduced specification which satisfies a certain property if and only if the full
specification satisfies it. For proving this we will show that the reduced specifi-
cation is a projection of the full specification onto some relevant subset of the
atomic propositions and events, i.e. they only differ on atomic propositions and
events that the formula does not mention.

The projection relation is first defined on paths and then lifted to Kripke
structures. Intuitively, when computing the projection of a given path onto a
set of atomic propositions and a set of events, one divides the path into blocks
such that all states inside a block are projection-equivalent (i.e. they coincide on
the given set of atomic propositions) and all events inside a block are irrelevant
events (i.e. events not from the given set of events) except for the last event in
the block which is a relevant event (i.e. an event from the given set of events).
The projection of the original path contains then any path such that for each of
the blocks of the original path all states and irrelevant events are mapped onto
one single state of the new path, while the relevant event remains in the new
path as illustrated in the following sketch of a projection of a path:

Block 0 Block 1 Block 2 Block 3

π = s0 e0 s1 e1 s2 e2 s3 e3 s4 e4 . . .

Pr(π) ∋ r0 e1 r1 e2 r2 e4 . . .

Definition 6. Let π = s0e0s1e1s2e2s3 . . . be an E ′-fair path over a set of atomic
propositions AP and a set of events E ⊇ E ′. The projection of π onto a set
of atomic propositions AP ′ and a set of events E ′ (PrAP ′,E ′(π)) contains any
E ′-fair path ρ = r0f0r1f1r2f2r3 . . . such that there is a sequence of indices 0 =
i0 < i1 < i2 < . . . (that divides π into blocks) with

– ∀ k ≥ 0: L(sik)∩AP ′ = L(sik+1)∩AP ′ = · · · = L(sik+1−1)∩AP ′ = L(rk)∩AP ′

(relevant atomic propositions do not change within a block and are the same
in the correspondent state of ρ),

– ∀ l ∈ N, ∀ k : il ≤ k < il+1 − 1 : ek ∈ E \ E ′

(no relevant events occur inside a block),
– ∀ l ≥ 1 : eil−1 = fl−1 ∈ E ′

(transitions between blocks are labelled with the same relevant event as the
correspondent transition of ρ).

For comparing the Kripke structures we restrict the definition to fair paths since
we are only considering satisfaction of formulae on fair paths.

Definition 7. Let Ki = (Si ,S0,i ,→i ,Li), i ∈ {1, 2}, be labelled Kripke struc-
tures over a set of atomic propositions AP and a set of events E, AP ′ ⊆ AP a
subset of the atomic propositions and E ′ ⊆ E a subset of the events.

K2 is in the projection of K1 onto AP ′ and E ′ (K2 ∈ PrAP ′,E ′(K1)) iff the
following holds:

1. For each E ′-fair path π in K1 there exists an E ′-fair path π′ in K2 such that
π′ ∈ PrAP ′,E ′(π),

2. and vice versa, for each E ′-fair path π′ in K2 there exists an E ′-fair path π

in K1 such that π′ ∈ PrAP ′,E ′(π).

Given a temporal logic which is interpreted on paths (i.e. a linear time logic)
and which is invariant under projections, such a projection relationship between
two Kripke structures then guarantees that formulae which only mention propo-
sitions from AP ′ and events from E ′ hold for either both or none of the Kripke
structures. The proof for formulae of state/event interval logic (SE-IL) can be
found in [3]. Note that projection is a particular form of stuttering.

In the following we will show how such a projection relationship can be proven
between full and sliced specification. For this we now first have to give a precise
definition of the residual CSP processes which remain after slicing with respect
to some set of events E ′.

Definition 8. Let P be the right side of a process definition from the CSP part
of a specification and E be the set of communications that appear in the specifi-
cation. The projection of P w.r.t. a set of communications E ′ ⊆ E is inductively
defined:

1. skip|E ′ := skip and stop|E ′ := stop

2. (e → P)|E ′ :=

{

P |E ′ if e 6∈ E ′

e → P |E ′ else
3. (P ◦ Q)|E ′ := P |E ′ ◦ Q |E ′ with ◦ ∈ {; , 9,⊓, 2}

The projection of the complete CSP part w.r.t. a set of communications
E ′ ⊆ E is defined by applying the above definition to the right side of each
process definition.

Correctness proof. Now we start the actual correctness proof with several lemmas
showing the relationships between CSP processes and events and variables which
remain in the specification.

In the proofs we use the notation of the last section, i.e. let N ′,E ′,V ′ denote
the nodes, events, variables which remain in the specification or PDG after slicing
and V ,AP are the variables and atomic propositions, respectively, on which the
full and reduced specification should agree.

Our first lemma considers the case of a single CSP transition: Either this transi-
tion is labelled with a relevant event e ∈ E ′ or with an irrelevant event e 6∈ E ′.
In the former case it is easy to see that the associated projection also can per-
form this event e, while in the latter case some further considerations lead to the
conclusion that the associated projection will finally perform the same relevant
event as the original process.

Lemma 1 (Transitions of CSP process projections). Let P and Q be two

CSP processes with P
e

−→ Q and E ′ a set of relevant events. The projections of
P and Q with respect to E ′ are related as follows:

1. If e is a relevant event, the projection of P can perform this event which
leads to the projection of Q:

e ∈ E ′: P |E ′

e
−→ Q |E ′

2. If e is no relevant event, then the projection of P can mimic any behaviour
of the projection of Q:

e 6∈ E ′: ∀ f , ∀R :

(

Q |E ′

f
−→ R|E ′

⇒ P |E ′

f
−→ R|E ′

)

Proof: We show both cases by induction over the structure of P . Since we know
that P can perform event e, we only have to consider a limited set of CSP
constructs.

1. e is a relevant event:
(a) P ≡ e −→ Q . X

(b) P ≡ P1 2 P2 with Pi
e

−→ Q for i ∈ {1, 2}.

Then P |E ′ ≡ P1|E ′ 2 P2|E ′ and, since Pi
e

−→ Q , the induction assump-

tion leads us to P |E ′

e
−→ Q |E ′ . X

(c) P ≡ P1 9 P2 with Pi
e

−→ P ′
i for i ∈ {1, 2} and Q ≡

{

P ′
1 9 P2 if i = 1

P1 9 P ′
2 else

Then P |E ′ ≡ P1|E ′ 9P2|E ′ and, since Pi
e

−→ P ′
i , we have P |E ′

e
−→ Q |E ′

with Q |E ′ ≡

{

P ′
1|E ′ 9 P2|E ′ if i = 1

P1|E ′ 9 P ′
2|E ′ else

X.

2. e is no relevant event:
(a) P ≡ e −→ Q .

Then P |E ′ ≡ Q |E ′ . X

(b) P ≡ P1 2 P2 with Pi
e

−→ Q for i ∈ {1, 2}.

Then P |E ′ ≡ P1|E ′ 2 P2|E ′ and, since Pi
e

−→ Q , it follows from the

induction assumption that ∀ f : Q |E ′

f
−→ R|E ′ ⇒ Pi |E ′

f
−→ R|E ′

and thus the further implication P |E ′

f
−→ R|E ′ . X

(c) P ≡ P1 9 P2 with Pi
e

−→ P ′
i for i ∈ {1, 2} and Q ≡

{

P ′
1 9 P2 if i = 1

P1 9 P ′
2 else

From the induction assumption it follows that ∀ f : P ′
i |E ′

f
−→ R|E ′ ⇒

Pi |E ′

f
−→ R|E ′ and, since the other component of P remains unchanged

during the transition from P to Q , it is obvious that ∀ f : Q |E ′

f
−→

R|E ′ ⇒ P |E ′

f
−→ R|E ′ . X.

The next lemma extends the previous one from single transitions to transition
sequences associated to complete projection blocks. It states that the projection
of each residual CSP process associated to a state inside a projection block as
defined in definition 6 can mimic the behaviour of the residual CSP process
associated to the last state of the projection block, i.e. the relevant event at the
end of the block is enabled at any previous step inside the block when computing
the CSP projection.

Lemma 2 (Transitivity of the previous lemma). Let Pj , . . . ,Pj+k+1 be
CSP processes, E ′ a set of relevant events, ej+1, . . . , ej+k−2 irrelevant events

(6∈ E ′), and ej+k a relevant event (∈ E ′), such that Pj

ej+1

−→ Pj+2

ej+3

−→ . . .
ej+k−2

−→

Pj+k−1

ej+k

−→ Pj+k+1 is a valid transition sequence.
Then the following holds:

P
ej+k

−→ Pj+k+1|E ′ with P ∈ {Pj |E ′ , . . . ,Pj+k−1|E ′}

Note, that Pj |E ′ = . . . = Pj+k−1|E ′ does not necessarily hold.
Proof: To prove this we apply the two clauses of lemma 1 backwards, starting
with the last step of the transition sequence:

1. For P ≡ Pj+k−1|E ′ this is obvious due to clause 1 of lemma 1.
2. For the projections of the remaining processes P ≡ Pj+k−3|E ′ , . . . ,P ≡ Pj |E ′

we can repeatedly apply clause 2 of lemma 1 to the respective previous case.

Next, we bridge the gap between transition sequences that we can observe for
CSP processes and paths that are present in the associated control flow graph.

Lemma 3 (CSP transition sequences and control flow graph paths).
Let C be a class specification, CFG the control flow graph of C , KCSP the

labelled Kripke structure associated to the CSP part of C , and P
e

−→ Q
f

−→ R
a transition sequence of KCSP . Then the two nodes enable e and enable f of
CFG are related in either one of the following ways:

1. There exists a path in CFG which leads from enable e to enable f :

pathCFG(enable e, enable f) 6= ∅

2. There exists a node interleavei in CFG which has enable e and enable f
as successors in different branches:

∃n = interleavei ∈ NCFG :
∃πe ∈ pathCFG(n, enable e)∧
∃πf ∈ pathCFG(n, enable f)∧
πe ∩ πf = {n}

Proof: We show both cases by considering the structure of P , resp. Q . Since
we know that P can perform event e and Q can perform event f , we again only
have to consider a limited set of CSP constructs for the structure of P and Q .
For the structure of P we can distinguish the following cases:

1. P ≡ e −→ Q .
Structure of Q :
(a) Q ≡ f −→ R. X (Path exists)

(b) Q ≡ Q1 2 Q2 with Qi
f

−→ R for i ∈ {1, 2}. X (Path exists)
(c) Q ≡ Q1 ⊓ Q2: analog. X (Path exists)

(d) Q ≡ Q1 9 Q2 with Qi
f

−→ Q ′
i for i ∈ {1, 2} and R ≡

{

Q ′
1 9 Q2 if i = 1

Q1 9 Q ′
2 else

X (Path exists)
(e) Q ≡ X with X as in one of the previous cases for Q : analog. X (Path

exists)

2. P ≡ P1 2 P2 with Pi
e

−→ Q for i ∈ {1, 2}.
Structure of Q : as in the previous case for P . X (Path exists)

3. P ≡ P1 ⊓ P2 with Pi
e

−→ Q for i ∈ {1, 2}.
Structure of Q : as in the previous cases for P . X (Path exists)

4. P ≡ P1 9 P2 with Pi
e

−→ P ′
i for i ∈ {1, 2} and Q ≡

{

P ′
1 9 P2 if i = 1

P1 9 P ′
2 else

Structure of Q :

(a) Either as in the previous cases for P . X (Path exists)
(b) Or the other branch of the interleaving operator comes into play such

that we have e and f in different branches of the interleaving operator
of P . X (Different Branches)

5. P ≡ X with X as in one of the previous cases.
Structure of Q : see the respective previous case. X (Either path exists or
different branches.)

Our last lemma states that the set of irrelevant events appearing inside a pro-
jection block does not have any influence on the relevant variables (resp. atomic
propositions) associated to the states inside the block.

Lemma 4 (No influence of irrelevant events on relevant variables). Let
C be a class specification with an associated labelled Kripke structure K , let

(sj ,Pj)
ej+1

−→ (sj+2,Pj+2)
ej+3

−→ . . .
ej+k−2

−→ (sj+k−1,Pj+k−1)
ej+k
−→ (sj+k+1,Pj+k+1)

be a transition sequence that is part of a path of K. Let furthermore be E ′ be
the set of relevant events computed by the slicing algorithm with respect to some
formula ϕ (with an associated set of variables Vϕ), and ej+1, . . . , ej+k−2 6∈ E ′,
and ej+k ∈ E ′. Then the following holds:

sj |V = . . . = sj+k−1|V with V = Vϕ ∪
⋃

e∈{ei∈E ′|i≥j}

ref (e)

Proof: Suppose, the equality does not hold. Then there is some irrelevant event
el (j +1 ≤ l ≤ j +k −2) that modifies some variable v ∈ V . One of the following
cases apply:

– v ∈ Vϕ: According to the definition of the slice this leads to el ∈ E ′, which
is a contradiction.

– v 6∈ Vϕ: According to the definition of V , there is a subsequent relevant
event ei ∈ E ′ (i ≥ j + k) that refers to v . According to lemma 3 the control
flow graph nodes associated to el and ei are related in either one of the
following ways:

1. There is a path in the control flow graph that connects both nodes di-
rectly.

2. Both nodes are located in separate branches of an interleaving operator
node.

Both cases imply the existence of a data dependence between el and ei .
Therefore, according to the construction of the slice, ei ∈ E ′ implies that
also el ∈ E ′, which is a contradiction.

Now we come to our main theorem that states the existence of a projection
relationship between the Kripke structures associated to the original and to the
sliced specification.

Theorem 1. Let C full be a class specification and C red the class obtained when
slicing C full wrt. a formula ϕ, associated with sets of events Eϕ and variables
Vϕ. Let E ′ and AP ′ be the set of events and atomic propositions, respectively,
which the slicing algorithm delivers as those of interest (in particular Eϕ ⊆ E ′

and Vϕ ⊆ V ′). Let furthermore K full (resp. K red) be the corresponding labelled
Kripke structure. Then the following holds:

K red ∈ PrAPϕ,E ′(K full)

Note that we overapproximate the set of events, while we underapproximate the
set of atomic propositions. The reason for the latter can be seen in the following
example Kripke structure:

f

rp q

e g

s
h

Suppose, the slicing criterion does not refer to any variable, but only to events
f and h. Further suppose, there is some variable v ∈ ref (f) with v ∈ mod(e)
and v ∈ mod(g), but mod(g) ∩ ref (h) = ∅. Then the slicing algorithm delivers
event e and variable v as part of the slice, but not event g, since its modification
of variable v is not referenced by any subsequent relevant event. Therefore, the
states inside projection blocks do not need to agree on all variables that the
slicing algorithm delivers as those of interest, but rather only on the variables
from Vϕ.

For the events on the other hand we can not choose the same approach: If we
only considered events from Eϕ we might neglect events that modify variables
from Vϕ such that the states inside projection blocks would not agree on the
modified variables. Therefore we have to consider all events that the slicing
algorithm delivers as part of the slice.

Proof:
According to the definition of the projection relationship we need to consider

two cases: (1) We have to show that for any E ′-fair path of K full we can construct

an E ′-fair path of K red and (2) vice versa. For both directions we define a set
of variables V i that contains all variables associated to the slicing criterion and
for each position i of the respective path all variables that are referenced by
relevant events ei ∈ E ′ at position i or beyond:

V i = Vϕ ∪
⋃

e∈{ej∈E ′|j≥i}

ref (e)

1. Let π = s0e1s2e3 . . . be an E ′-fair path of K full with si = (sOZ
i ,Pi). We

construct a sequence ρ′ = t0f1t2f3 . . . with ti = (tOZ
i ,Qi)

tOZ
i : sOZ

i |V i

Qi : Pi |E ′

fi :

{

ei if ei ∈ E ′

nop else

Out of ρ′ we construct a sequence ρ by eliminating all subsequences of the
form nop ti . We have to show that ρ is an E ′-fair path of K red .
(a) Fairness: Since π is fair, it contains infinitely many events from E ′ and

thus also ρ does so.
(b) Path: This is shown by induction over the corresponding paths.

Induction base: According to the construction of ρ we have tOZ
0 |V 0

=

sOZ
0 |V 0

and Q0 = P0|E ′ .

Since the Init schema of C red contains the same or fewer predicates
than the Init schema of C full there are fewer restrictions on values of
variables, such that

Initfull(sOZ
0) ⇒ Initred(s0|V 0

)

According to the construction of the slice P0|E ′ represents the main
process of the CSP part of C red , thus it is obvious that Q0 is the CSP
part of the initial state for any path of K red .
Induction step: Suppose ρ is a path of K red up to ti = (tOZ

i ,Qi).

We now have to show that the next transition ti
fi+1

−→ ti+2 exists in K red .
This transition is either a synchronous transition or a CSP-asynchronous
transition.

Synchronous transition: We have to show that (i) transition tOZ
i

fi+1

−→

tOZ
i+2 exists in KOZ ,red and (ii) transition Qi

fi+1

−→ Qi+2 exists in KCSP ,red .
i. Object-Z part: From the construction of ρ we know that in KOZ ,full

a transition sequence

sOZ
j

ej+1

−→ sOZ
j+2

ej+3

−→ . . .
ej+k−2

−→ sOZ
j+k−1

ej+k
−→ sOZ

j+k+1

exists with {ej+1, ej+3, . . . , ej+k−2} ∩ E ′ = ∅

and ej+k = fi+1 ∈ E ′

such that lemma 4 leads to sOZ
j |V j

= . . . = sOZ
j+k−1

|V j
= tOZ

i |V j
.

To show that transition tOZ
i

fi+1

−→ tOZ
i+2 exists with tOZ

i+2|V j
= sj+k+1|V j

,

we first have to show that fi+1 is enabled in tOZ
i and, second, that

it leads to such a state tOZ
i+2.

To show the first claim we suppose the contrary: Let fi+1 be not
enabled in tOZ

i . Then there must be some predicate in fi+1 that
is not satisfied in tOZ

i . Since we know that fi+1 = ej+k is enabled
in sOZ

j+k−1
and sOZ

j+k−1
and tOZ

i coincide on all variables from V j ,

the unsatisfied predicate must contain a variable not in V j . This,
however, is a contradiction to the construction of V j .
To show the second claim we exploit the knowledge that ej+k leads
from sOZ

j+k−1
to sOZ

j+k+1
. We suppose that fi+1 leads from tOZ

i to some

t̂OZ
i+2 with t̂OZ

i+2|V j
6= sOZ

j+k+1|V j
. This means there is a set D ⊆ V j of

variables whose valuation in t̂OZ
i+2 differs from that in sOZ

j+k+1
. Since

ej+k = fi+1, this must be due to some predicates in fi+1 that allow
multiple valuations for the variables in D . Instead of t̂OZ

i+2 we can

therefore safely choose a state tOZ
i+2 with tOZ

i+2|V j \D
= t̂OZ

i+2|V j\D
and

tOZ
i+2|D = sOZ

j+k+1
|D and hence also tOZ

i+2|V j
= sOZ

j+k+1
|V j

.

ii. CSP part: From the construction of ρ we know that in KCSP ,full a
transition sequence

Pj

ej+1

−→ Pj+2

ej+3

−→ . . .
ej+k−2

−→ Pj+k−1

ej+k

−→ Pj+k+1

exists with {ej+1, ej+3, . . . , ej+k−2} ∩ E ′ = ∅

and ej+k = fi+1 ∈ E ′.

From lemma 2 we therefore know that Qi ≡ Pj |E ′

ej+k≡fi+1

−→ Pj+k+1|E ′ ≡
Qi+2 is possible.

CSP-asynchronous transitions: Here we only need to consider the CSP
part of the transition, since the Object-Z part remains unchanged. Conse-
quently, the same arguments as for the CSP part in the synchronous case
can be applied.

2. Let ρ = t0f1t2f3 . . . be an E ′-fair path of K red with ti = (tOZ
i ,Qi). We

inductively construct a path

π = s0e
1
0s2

0e3
0 . . . sn0

0 e1s2e
1
2s2

2e3
2 . . . sn2

2 e3s4e
1
4 s2

4 . . .

of K full with si = (sOZ
i ,Pi) and s j

i = (sOZ ,j
i ,P j

i) and ei = fi ∈ E ′ and

ej
i 6∈ E ′.

Induction base: s0
– OZ part: We know that Initred(tOZ

0) holds. Init full has at least all pred-
icates that Initred has, possibly plus some additional predicates that
restrict some further variables which are not present in C red . Therefore,
we can choose an sOZ

0 that coincides in all variables from C red with
tOZ
0 and is modified in the remaining variables in order to satisfy the

additional predicates.

– CSP part: Out of the main process main = P of C full the slicing algo-
rithm computes a reduced main process main = P |E ′ of C red . Since P |E ′

exists, we know that an associated P exists which can be constructed by
applying the CSP process projection rules backwards.

Induction step: Assume we have constructed the sequence up to some state
si = (sOZ

i ,Pi) with sOZ
i |V i

= tOZ
i |V i

and Pi |E ′ = Qi .

From ei+1 = fi+1 we can derive that enable fi+1 = enable ei+1 and there-
fore we know that ei+1 is enabled in sOZ

i and its execution leads to some sOZ
i+2.

Furthermore we know that effect ei has all predicates that effect fi =
has, and therefore we have sOZ

i+2|V i
= tOZ

i+2|V i
.

Nevertheless, ei+1 might not yet be enabled in Pi , but some intermediate
ej
i 6∈ E ′ might be necessary to reach a P j

i such that ei+1 is enabled in P j
i

and leads to Pi+2 with Pi+2|E ′ = Qi+2. We now have to show that these
intermediate ej

i are possible, that they do not change sOZ
i on V i s.t. ei+1 is

enabled in any sOZ ,j
i and that they lead to some P j

i with P j
i

ei+1

−→ Pi+2 and
Pi+2|E ′ = Qi+2.
We show this inductively by considering the structure of Pi from which the
slicing algorithm computed Qi .

(a) Pi ≡ e → P :

– e ∈ E ′ : Qi ≡ e → P |E ′ (no intermediate steps are necessary)
– e 6∈ E ′ : Qi ≡ P |E ′

In this case, intermediate steps are necessary to get from (sOZ
i ,Pi)

to (sOZ
i+2,Pi+2). We now have to show that

i. these steps are possible, i.e. enabled in (sOZ
i ,Pi). Suppose, one

of the intermediate steps ej
i is not enabled in sOZ

i . This would be
due to an unsatisfied predicate in its enable schema. According
to lemma 3 (first case) we would therefore have either a control
dependence between ej

i and ei+1 that leads us (according to the

construction of the slice) to ej
i ∈ E ′ which is a contradiction.

The other possibility according to lemma 3 (second case) is that
ej
i and ei+1 are located in different branches of the same inter-

leaving node. In this case we do not need to make a transition in
this blocked branch of the interleaving operator but can safely
proceed with a transition on the other branch.

ii. these steps do not change variables in V i . This is a direct con-
sequence of lemma 4.

iii. these steps lead to some (sOZ ,j
i ,P j

i) with P j
i

ei+1

−→ Pi+2 and

sOZ ,j
i

ei+1

−→ sOZ
i+2.

• sOZ ,j
i : Since ei+1 is already enabled in sOZ

i and none of the ej
i

changes any v ∈ V ′, ei+1 is still enabled in sOZ ,j
i .

• P j
i : Since ej

i are the steps that are removed from Pi in order
to get Qi ≡ Pi |E ′ and ei+1 is enabled in Qi , the execution of
ej
i will lead to some P j

i such that ei+1 is enabled as well.

(b) Pi ≡ Pi,1 2 Pi,2:

– Either ∃ j ∈ {1, 2} : Pi,j
e

−→ P ′
i,j with e ∈ E ′. Then ei + 1 ≡ e and

Qi+2 ≡ P ′
i,j . X

– Otherwise ∃ j ∈ {1, 2} : Pi,j
e

−→ P ′
i,j with e 6∈ E ′. Then e is one of

the intermediate events and we have start another case analysis for
the intermediate process Pi,j .

(c) Pi ≡ Pi,1 ⊓ Pi,2: Analog to the previous case. X

(d) Pi ≡ Pi,1 9 Pi,2:

– Either ∃ j ∈ {1, 2} : Pi,j
e

−→ P ′
i,j with e ∈ E ′. Then ei + 1 ≡ e and

Qi+2 ≡

{

P ′
i,1 9 Pi,2 if j = 1

Pi,1 9 P ′
i,2 else

X

– Otherwise ∃ j ∈ {1, 2} : Pi,j
e

−→ P ′
i,j with e 6∈ E ′. Then e is one of

the intermediate events and we have to start another case analysis

for the intermediate process

{

P ′
i,1 9 Pi,2 if j = 1

Pi,1 9 P ′
i,2 else

5 Conclusion

In this paper we have proposed a slicing algorithm for an integrated formal
method covering state-based as well as behaviour-oriented aspects. We have
shown correctness of the algorithm with respect to a projection relationship
between the paths of the full and the reduced specification (starting from some
set of relevant variables and events). Thus the reduction preserves formulae
(speaking about these relevant variables and events) of any linear-time temporal
logic which is invariant under projection. Slicing can thus help to reduce the
specification before verification. Since the program dependence graph is in size
linear in the syntactic representation of the specification (and thus usually much
smaller than the state space), slicing can also be carried out in cases when model
checking is too complex. Furthermore, the program dependence graph only has
to be constructed once for every specification, only backward reachability has
to be computed for every formula. Our slicing technique acts as a preparatory
step in the verification of CSP-OZ specifications; the following model checking
step is carried out by a constraint-based abstraction refinement model checker
as recently proposed by Hoenicke and Maier [10].

In the future we plan to extend this technique to a third modelling dimen-
sion, namely timing requirements as covered by the formalism CSP-OZ-DC [11]
(an extension of CSP-OZ with Duration Calculus). Furthermore, in order to
complete the process of slicing and model checking, a non-trivial problem still
remains to be solved: How can we relate a counterexample obtained for a reduced
specification to a corresponding one for the original specification?

Related work. There are two strands of research which touch upon our work. The
first is on slicing of formal specifications, which has mainly been done for Z speci-
fications [16, 4, 27]. These works, however, do not consider verification, i.e. slicing
is not carried out with respect to temporal logic properties of the specification.
The second area of related work concerns slicing used for reducing programs

before verification, as for instance done in [8] for Java (preserving LTL−X prop-
erties) and in [24] for SAL programs (preserving CTL∗

−X properties). Slicing for
integrated specification techniques has so far not been considered.

References

1. I. Brückner and H. Wehrheim. Slicing an Integrated Formal Method for Verifica-
tion. In ICFEM 2005: Seventh International Conference on Formal Engineering
Methods, volume 3785 of LNCS, pages 360–374. Springer, 2005.

2. I. Brückner and H. Wehrheim. Slicing Object-Z Specifications for Verification. In
ZB 2005: Formal Specification and Development in Z and B, volume 3455 of LNCS,
pages 414–433. Springer-Verlag, 2005.

3. I. Brückner and H. Wehrheim. Slicing Object-Z Specifications for Verification.
Technical Report 3, SFB/TR 14 AVACS, http://www.avacs.org/, 2005.

4. D. Chang and D. Richardson. Static and Dynamic Specification Slicing. In ACM
SIGSOFT International Symposium on Software Testing and Analysis, pages 138–
153. ACM, 1994.

5. E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.
6. C. Fischer. CSP-OZ: A Combination of Object-Z and CSP. In H. Bowman and

J. Derrick, editors, Formal Methods for Open Object-Based Distributed Systems
(FMOODS ’97), volume 2, pages 423–438. Chapman & Hall, 1997.

7. W. Grieskamp, M. Heisel, and H. Dörr. Specifying Embedded Systems with Stat-
echarts and Z: An Agenda for Cyclic Software Components. In Egidio Astesiano,
editor, FASE ’98, volume 1382 of LNCS, pages 88–106. Springer, 1998.

8. J. Hatcliff, M. Dwyer, and H. Zheng. Slicing Software for Model Construction.
Higher-order and Symbolic Computation, 13(4):315–353, 2000.

9. C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.
10. J. Hoenicke and P. Maier. Model-checking specifications integrating processes, data

and time. In FM 2005, volume 3582 of LNCS, pages 465–480. Springer, 2005.
11. J. Hoenicke and E.-R. Olderog. CSP-OZ-DC: A Combination of Specification

Techniques for Processes, Data and Time. Nordic Journal of Computing, 9(4):301–
334, 2002.

12. ISO/IEC. Enhancements to LOTOS (E-LOTOS) – International Standard
15437:2001. ISO/IEC – Information technology, 2001.

13. R.P. Kurshan. Computer-Aided Verification of Coordinating Processes. Princeton
University Press, 1994.

14. B. Mahony and J.S. Dong. Timed communicating Object-Z. IEE Transactions on
Software Engineering, 26(2):150–177, 2000.

15. L. Millett and T. Teitelbaum. Issues in Slicing PROMELA and its Applications
to Model Checking, Protocol Understanding, and Simulation. Software Tools for
Technology Transfer, 2(4):343–349, 2000.

16. T. Oda and K. Araki. Specification Slicing in Formal Methods of Software Develop-
ment. In Proceedings of the Seventeenth Annual International Computer Software
& Applications Conference, pages 313–319. IEEE Computer Society Press, 1993.

17. A.W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall Series in
Computer Science, 1998.

18. G. Smith. A Semantic Integration of Object-Z and CSP for the Specification of
Concurrent Systems. In J. Fitzgerald, C. B. Jones, and P. Lucas, editors, FME’97:
Industrial Application and Strengthened Foundations of Formal Methods, volume

1313 of Lecture Notes in Computer Science, pages 62–81. Springer-Verlag, Septem-
ber 1997.

19. G. Smith. The Object-Z Specification Language. Kluwer Academic Publisher, 2000.
20. G. Smith and J. Derrick. Specification, Refinement and Verification of Concurrent

Systems – An Integration of Object-Z and CSP. Formal Methods in System Design,
18(3):249 – 284, 2001.

21. K. Taguchi and K. Araki. Specifying Concurrent Systems by Z + CCS. In In-
ternational Symposium on Future Software Technology (ISFST), pages 101–108,
1997.

22. F. Tip. A Survey of Program Slicing Techniques. Journal of Programming Lan-
guages, 3(3):121–189, 1995.

23. H. Treharne and S.A. Schneider. Communicating B Machines. In ZB2002: Inter-
national Conference of Z and B Users, volume 2272 of LNCS. Springer, 2002.

24. N. Shankar V. Ganesh, H. Saidi. Slicing SAL. Technical report, SRI International,
http://theory.stanford.edu/, 1999.

25. M. Weiser. Programmers use slices when debugging. Communications of the ACM,
25(7):446–452, 1982.

26. J.C.P. Woodcock and A.L.C. Cavalcanti. The Semantics of Circus. In ZB 2002:
Formal Specification and Development in Z and B, volume 2272 of LNCS, pages
184–203. Springer-Verlag, 2002.

27. Fangjun Wu and Tong Yi. Slicing Z Specifications. SIGPLAN Not., 39(8):39–48,
2004.

