
AVACS – Automatic Verification and Analysis of Complex Systems

REPORTS
of SFB/TR 14 AVACS

Editors: Board of SFB/TR 14 AVACS

Dynamic Communicating Probabilistic Timed Automata

Playing Games

by

Rüdiger Ehlers E. Moritz Hahn Martin Mehlmann
Hans-Jörg Peter Jan Rakow Tobe Toben Bernd Westphal

AVACS Technical Report No. 75
July 2011

ISSN: 1860-9821

Publisher: Sonderforschungsbereich/Transregio 14 AVACS
(Automatic Verification and Analysis of Complex Systems)

Editors: Bernd Becker, Werner Damm, Bernd Finkbeiner, Martin Fränzle,
Ernst-Rüdiger Olderog, Andreas Podelski

ATRs (AVACS Technical Reports) are freely downloadable from www.avacs.org

Copyright c© July 2011 by the author(s)

Author(s) contact: Bernd Westphal (westphal@informatik.uni-freiburg.de).

Dynamic Communicating Probabilistic Timed Automata

Playing Games

Rüdiger Ehlers3, E. Moritz Hahn3, Martin Mehlmann4, Hans-Jörg Peter3, Jan Rakow1, Tobe
Toben2, and Bernd Westphal4

1 Carl von Ossietzky University Oldenburg, Germany
2 OFFIS e.V., Oldenburg, Germany

3 Saarland University Saarbrücken, Germany
4 Albert-Ludwigs-University Freiburg, Germany

Abstract. Systems of Systems (SoS) comprising a varying number of communicating pro-
cesses (or agents) are getting ever more important. As of yet, formal modeling languages and
specification logics address isolated features of SoS only. We propose the concise modeling
language DCS++ and the property specification logic DPTATL that address all relevant
SoS aspects in a unified game-theoretic framework. Language and logic turn out to be an
orthogonal extension of well-known modeling formalisms and logics. Both modeling and
specification languages are demonstrated on a non-trivial network routing example.

1 Introduction

The growing interest in System of Systems (SoS), that is, a collection of concurrently interacting
sub-systems, raises the need for new integrated modeling and specification frameworks. In particu-
lar safety-critical applications of SoS require a rigid understanding of the SoS behavior. As of yet,
many isolated characteristics of SoS can be addressed by different formal languages. In particular,
Timed Automata (TA) [2] and Markov Decision Processes (MDP) [22] have been proposed for
(monolithic) modeling of real-time and probabilistic aspects, respectively. Also, there are different
(modular) frameworks to specify communication aspects, e.g. Communicating Finite State Ma-
chines (CFSM) [11], which have already been extended to cope with dynamic process creation
and dynamically changing communication topologies, e.g. in Dynamic Communication Systems
(DCS) [8]. Similarly, Probabilistic Timed Automata (PTA) [18] pose an extension of TA and MDP.
There is, however, no unified framework that addresses all the dimensions of communication-,
real-time-, probabilistic- and dynamic behavior in a non-monolithic, but modular style of dynamic
communicating automata. A further dimension, games, allows to distinguish between adversarial
and collaborative behavior. We propose a framework that is expressive enough to deal with real-
izability properties such as “does team T of processes have a strategy to realize a certain objective
within time t with a probability of at least p against all other processes”. The underlying formal
language DCS++ is based on a new class of automata, namely dynamic communicating proba-
bilistic timed automata (DCPTA). DCPTA are instantiated to processes owning a unique identity
from a (possibly unbounded) set of identities Id. Processes store identities in link-typed variables
and may communicate them by multi-cast synchronous message passing, leading to a dynamically
changing communication topology.

The semantics of DCS++ is defined in terms of a dynamic probabilistic timed game structure
(DPTGS), a combination of probabilistic timed structures (PTS) [19] and timed game structures
(TGS) [4]. To address the dynamics in communication, we use a state s ∈ S in such structures
to actually represent a graph that characterizes the current communication topology. This yields
a probabilistic timed game model, where Γ : S → {(p, d, a) ∈ Id × R≥0 × Act} assigns available
moves to a state, stating which process p after delay d may apply action a. The effect of a move
(p, d, a) ∈ M is defined in a probabilistic transition relation δ : S ×M → µ(S), which determines
the probability to take a transition from a state s to state s′ under a move m. We obtain an open
system semantics, where, roughly speaking, a team of processes with all its descendants plays
against all other processes and their descendants.

DCS++ is complemented by the specification logic DPTATL that expresses SoS properties
regarding time, probability, and strategies, and which has a sound formal interpretation. DPTATL
provides logical agents variables, including first-order quantification and the ability to refer to the
birth, state and communication topology of dedicated processes. The property above, intuitively,
requires the existence of a team strategy that, against all possible strategies for the adverse team,
yields a set of strategy outcomes (essentially paths in the DPTGS) that still meets the probability
and time bound.

Note that the concept of identities in DPTGS smoothly integrates into both the property
specification and the open system semantics – in DPTATL a team is made up of processes that
have a direct counterpart in the formal model description of DCPTA.

Probability
Communication

Time

b
b

b

b

b

b
b

FSM
MDP[22] CFSM[11]

TA[2]

NoTA
PTA[18]

Dynamics

b
b

b

b

b

b
b

b

b

b

b

b

FSM
DCS++

Probability
Game

Time

b
b

b

b

b

b
b

CTL
PCTL[15] ATL[3]

TCTL[1]

PATL[12]

TATL[16]PTCTL[18]

Dynamics

b
b

b

b

b

b
b

b

b

b

b

b

b

b

b

CTL
DPTATL

Fig. 1. DCS++ and DPTATL situated.

Related Work TA [2] extend classical finite state machines (FSM) by clock variables and thereby
allow constraining the times at which transitions occur. Probabilistic aspects are typically ex-
pressed by variants of MDP [22], where edges are labeled with actions and the behavior is a
non-deterministic choice among probabilistic edges (i.e. the successor state is determined by
a probabilistic choice). Run-time creation of processes can be modeled in the π-calculus [21],
automata-based frameworks like Dynamic Input/Output Automata [5] or DCSs [8], or in Graph
Transformation Systems [23]. These formalisms typically also allow for communication among
the set of active processes. CFSM [11] focus on FIFO-buffered communication within a statically
connected set of FSMs. PTA [18] are an extension of timed automata with discrete probability dis-
tributions. Games on PTAs have been proposed in [20]. Networks of Timed Automata (NoTA) are
considered by the UPPAAL Model-Checker [9]. The Promela language of SPIN has been extended
with dynamics and probabilism [7]. Modest [10] combines time and probabilism in a compositional
framework, and also allows for a limited form of dynamic process creation. In concurrent game
structures [3] transitions correspond to moves which are controlled by dedicated players. This
formalism allows expressing open systems that interact in a (hostile) environment.

Corresponding extensions related to time, probabilism, games and dynamics have also been
proposed for specification logics, typically as variants of the temporal logics CTL and LTL. In
particular, there are Timed CTL [1] and Probabilistic Timed CTL [19], Alternating-time Temporal
Logic (ATL) [3] as a generalization of CTL with path quantification based on the game semantics,
timed and probabilistic variants of ATL (TATL [16], PATL [12]), a stochastic game logic [6], and
first-order extensions of temporal logics like Evolution Logic [26], BOTL [14] and Mett [8] for
addressing dynamics in the set of processes.

To the best of our knowledge, there is no modeling language and no specification logic that
addresses all considered aspects in a unified framework. Fig. 1 illustrates the orthogonality in
DCS++ and DPTATL.

Preliminaries. By µ(Q) ⊂ [Q → [0, 1]] we denote the set of all finite discrete probability distribu-
tions over a set Q, i.e. for each P ∈ µ(Q),

∑

q∈Q P (q) = 1 and {q ∈ Q | P (q) > 0} is finite. A

probability space is a tuple (Ω,F ,P), where Ω is the sample space, F ⊆ 2Ω is a σ-algebra on Ω (i.e.,
a set containing Ω and closed under complement and denumerable union), and P is a probability
measure on F (i.e. a function P : F → [0, 1] such that P(Ω) = 1 and P(

⊎

i≥0Bi) =
∑

i≥0 P(Bi),
where {Bi}i≥0 is a disjoint denumerable family of sets in F). The pair (Ω,F) is called measurable
space. A Borel measurable space is the smallest measurable space containing all open sets of a
topology. We denote by B(Ω) the Borel σ-algebra on a sample space Ω. Let Prob(Ω) denote the
set of all probability measures on B(Ω), and supp(P) = {X ∈ dom(P) | P(X) > 0}.

2 Dynamic Communicating Probabilistic Timed Automata

In this section, we introduce DCPTA, an orthogonal composition of TA and MDP extended by
communication over links and dynamic process creation. As semantic model we will introduce
DPTGS which combines PTS and TGS with the concept of dynamic topologies.

2.1 DCPTA Syntax

q

[inv(q)]
q1

qn

...

q′1

q′n

...
w1λ1

w
nλ

n

[ϕ]
? e

w
1
λ1

wn λn

[ϕ]
lR!e(lP)

〈q, lR, e, lP , ϕ, P 〉 ∈ R!

send edge

〈q, e, ϕ, P 〉 ∈ R?

receive edge

Fig. 2. DCPTA Syntax

A DCPTA is basically given as an automaton description, hence comprising a set of locations
and (labelled) hyper edges. Additionally, a DCPTA has two sets of variables, namely clock- and
link-typed ones, denoted by X and L, respectively. While a clock is real-valued, a link has the
domain 2Id ranging over a set of identities Id. Sending a message over a link means sending the
message to each identity stored in the link variable. Also, a link can be attached to a message
as parameter such that the content of a link can be passed to other processes. By this, dynamic
communication topologies can be established. We introduce the basic syntactic concepts first and
then define DCPTA below.

Constraints We inductively define the set Constr(V) of constraints over variables V = X ∪̇ L by

ψ ::= ¬ψ1 | ψ1 ∧ ψ2 | ζ1 < ζ2 | ζ1 = ζ2 | l ⊂ l′ | l = l′,

where l, l′ ∈ L and ζ1, ζ2 is either a variable c ∈ X or a constant (rational number).

Messages The set of all messages is denoted by Msgs, and each message e ∈ Msgs has a set of
predefined formal parameters Prms = {snd, param} ⊆ L.

Update Assignments We denote the set of type-consistent basic update assignments over a set of
variables V by Assign0(V). Each basic update assignment has a notion of a left-hand side variable.
Assign0(V) is inductively defined by

λ̃ ::= c := 0 | l := l′ ∪ l′′ | l := l′ ∩ l′′ | l := l′ \ l′′

where c ∈ X is a clock, and l, l′, l′′ ∈ L are links. The set of update assignments Assign(V) induced
by Assign0(V) comprises the consistent terms of the form

λ ::= skip | λ̃ | l := create(B) | λ1;λ2,

where λ̃ ∈ Assign0(V), l ∈ L is a link, and B is a DCPTA. Such a term is called consistent if and
only if each variable from V occurs at most once as left-hand side variable.

DCPTA Definition Figure 2 gives an overview of DCPTA syntax by means of two (symbolic)
edges. Formally, a DCPTA is a tuple

B = (Q, q0,V , inv,M,R!,R?), where

– Q is a finite set of locations with initial location q0 ∈ Q,
– V ⊆ X ∪̇ L is a finite set of variables with self ∈ L and {snd, param} ∩ V = ∅,
– inv : Q→ Constr(X) assigns each location a constraint over clock variables,
– M ⊆ Msgs is a finite set of messages.
– R! ⊆ Q× L×M×L× Constr(V)× µ(Assign(V)×Q) is a set of send edges,
– R? ⊆ Q×M× Constr(V ∪ Prms)× µ(Assign(V ∪ Prms)×Q) is a set of receive edges.

For edges 〈q, lR, e, lP , ϕ, P 〉 ∈ R! and 〈q, e, ϕ, P 〉 ∈ R?, we have that in both cases, q is the source
location, e is the synchronization message, ϕ is the guard, and P is a discrete probability distri-
bution on a finite set of pairs 〈λ, q〉. A pair 〈λ, q〉 comprising an update assignment λ and target
location q is also called update. In a send edge 〈q, lR, e, lP , ϕ, P 〉 ∈ R!, additionally, lR symbolically
denotes the receivers and lP is the link parameter, storing identities to be communicated. Link
self allows accessing the own identity. The formal parameters snd and param allow accessing the
identity of the sender and the messages parameter (c.f. Sect.4), respectively. An internal transition
is modeled by a send edge with self as receiver.

Well-formedness Updates 〈λ, q〉 may use variables in V \ {self} as left-hand side variables only.
Thus assignments to parameters in Prms are excluded. Message reception in a DCPTA has to be
input deterministic, formally ∀ t1 = 〈q1, e1, ϕ1, P1〉, t2 = 〈q2, e2, ϕ2, P2〉 ∈ R? : t1 6= t2 ∧ q1 =
q2 ∧ e1 = e2 =⇒ ϕ1 ∧ ϕ2 ≡ false. Non-determinism is only allowed among send edges.
By this, we will be able to determine a unique probability distribution on the state space by
considering the distribution of the send edge fired and the involved receive edges distributions
(if any). Moreover, given that P is induced by the probabilities w1, . . . , wn ∈ R≥0, we require
w1≤i≤n ≥ 0 ∧

∑n

i=1 wi = 1.
For all updates 〈λ, q〉 not explicitly denoted (or drawn), we implicitly have P (〈λ, q〉) = 0. A

send edge is blocked unless all named receivers are ready. Hence, we assume that DCPTAs are
input enabled, i.e. each location has at least one receive edge per message. The guard of an edge
can be omitted if ϕ is true.

lR ϕ supp(P) inv λ
FSM ≡ self ≡ true = 1 dom(inv) = ∅ ∅
TA ≡ self ∈ Constr(X) = 1 ∈ Constr(X) Assign(X)

MDP ≡ self ≡ true ≥ 1 dom(inv) = ∅ ∅
PTA ≡ self ∈ Constr(X) ≥ 1 ∈ Constr(X) Assign(X)
DCS ∈ L ∈ Constr(L) = 1 dom(inv) = ∅ Assign(L)

CFSM ∈ L ∈ Constr(L) = 1 dom(inv) = ∅ Assign(L)

Fig. 3. DCPTA Subclasses

Orthogonality DCPTA encompass FSM, TA, MDP and PTA as illustrated in Fig. 3. The mono-
lithic formalisms of FSM, TA, MDP and PTA are obtained by restricting the receivers lR to self

only. While timed variants arise by restricting all guards ϕ to expressions over clock variables
and the assignments to clock-resets only, untimed ones are derived if guard ϕ, invariants inv(q)
and assignments are entirely absent. In contrast to non-probabilistic formalisms TA and FSM,

probabilistic branching is still present in MDP and PTA, so that edges may define non trivial
distributions P with |supp(P)| > 1. The modular formalisms CFSMs and DCSs, are derived
by exclusion of clocks and non-trivial distributions. Actually, CFSMs describe a static setting
of anonymous communicating automata, where create statements only occur in an initialization
phase.

DCS++ A DCPTA serves as a behavioral template that is dynamically instantiated to processes.
A set of DCPTAs D = ({B1, . . . ,Bn},B0) is called a DCS++ model.

While the initial DCPTA B0 ∈ {B1, . . . ,Bn} is implicitly instantiated from the start, all other
processes are created dynamically by some process executing a create statement.

2.2 Dynamic Probabilistic Timed Game Structure

Dynamic Probabilistic Timed Game Structures (DPTGS) will serve as the semantic domain for
DCS++ models and thereby unify the semantic models of TA, MDP, PTA and TGA with the
concept of identities from DCSs.

DPTGS Definition A DPTGS over identities Id is given as a tuple (S, Γ,Act, δ), where

– S is a set of states on which a notion of domain is defined in form of a function dom : S → 2Id

indicating a set of processes active in a state.

– M ⊆ Id ×R≥0 × Act is a set of moves. We assume Act to comprise an idle action ⊖ ∈ Act. A
move is a tuple (p, d, a) ∈ M of an identity p, delay d and an action a.

– Γ : S → 2M assigns each state s ∈ S a set of available moves Γ(s).

– δ : S×M → µ(S) is a probabilistic transition relation

such that the following well-formedness constraints hold:

1. |supp(δ(s, (p, d,⊖)))| = 1 for p ∈ Id, s ∈ S, d ∈ R≥0

2. For all d, d′ ∈ R≥0 with d′ ≤ d and all a ∈ Act

(a) (p, d, a) ∈ Γ(s) iff (p, d′,⊖) ∈ Γ(s) and (p, d − d′, a) ∈ Γ(δ(s, (p, d′,⊖))) (time additivity),
and

(b) if δ(s, (p, d′,⊖)) = s′ and δ(s′, (p, d−d′, a)) = P , then δ(s, (p, d, a)) = P (time determinism).

3. (p, 0,⊖) ∈ Γ(s) for all p ∈ Id and s ∈ S (stutter move).

4. δ(s,m)(s′) > 0 implies dom(s) ⊆ dom(s′) (monotone frame).

The first three constraints are well-known from timed and probabilistic timed structures [27, 19,
4]. The monotone frame property requires active processes not to disappear. Disappearance can
be modeled by restricting the set of available moves (i.e. by entering a sink location).

As in TGS, the transition relation is split into two functions assigning a set of available moves
to a state (Γ) and the effect of a move (δ). In this semantic (game) model, intuitively, in a state
s all processes p ∈ dom(s) propose simultaneously and independently a move m = (p, d, a) ∈ Γ(s).
The move with the shortest delay prevails and is applied to s: After delay d action a is fired and
with probability δ(s,m)(s′) state s′ is entered. In case of several moves of equal delay one move
is selected non-deterministically. Formally, a finite set of moves κ ⊆ Γ(s) is combined by the joint
destination function δj : 2

M → 2M:

δj(κ) =
{

(p, d, a) ∈ κ | d = min{d′ | (p′, d′, a′) ∈ κ}
}

.

Our logic DPTATL (see Sect. 3) will allow to require the existence of a strategy for a team
T ⊆ dom(s) of processes in a DPTGS that with probability p enforces an outcome achieving a
certain objective against the rest of processes. For this, we need some technical definitions of paths,
strategies, and outcomes.

Paths, Strategies and Outcomes. A path ω is a sequence ω = s0
m0−→ s1

m1−→ . . . where si ∈ S,
mi = (pi, di, ai) ∈ Γ(si) and δ(si,mi)(si+1) > 0 for all 0 ≤ i ≤ |ω|. For a finite path ω, |ω| ∈ N

is the length of the path. move(ωi) is the i-th move, and ωi the i-th state of ω. By ω ↑i we
denote the finite prefix of ω up to ωi. FinPth (InfPth) is the set of all finite (infinite) paths of
a given structure and FinPth(s) (InfPth(s)) is the set of all finite (infinite) paths starting at s.
The physical time of a path ω ∈ InfPth at position k ∈ N0 is defined by time(ω, 0) = 0 and
time(ω, k) = time(ω, k − 1) + d iff mk = (·, d, ·). The set of time-divergent paths Timediv ⊆ InfPth

is defined as Timediv = {ω ∈ InfPth | limk→∞ time(ω, k) = ∞}.
By Desc(T, ω) ⊆ Id we denote the set of all processes created along a finite path ω by processes

T or their descendants, i.e. Desc(T, ω) = Desc(T, ω ↑|ω|−1) ∪ {p ∈ dom(ω|ω|) \ dom(ω|ω|−1) |
move(ω|ω|) ∈ Desc(T, ω↑|ω|−1)×R≥0 × Act} if |ω| > 1 and Desc(T, ω) = T if |ω| = 1. Intuitively,
by this definition those identities that emerge in any transition controlled by a team process (or a
descendant) are cumulated.

A joint strategy for a team of processes T ⊆ dom(s) at state s is a function

πT : {(p, ω) ∈ Id× FinPth(s) | p ∈ Desc(T, ω)} → M,

such that πT (p, ω) ∈ {(p′, d′, a′) ∈ Γ(last(ω)) | p = p′} for all p ∈ Desc(T, ω) and ω ∈ FinPth(s).
That is, given a finite path ω, a joint strategy for team T processes assigns each team T process
and any descendant along path ω a move m available in last(ω).

Let πT be a joint strategy for team T starting at state s and πT be a joint counter strategy to
team T starting at state s, that is, let πT be a joint strategy for team T = dom(s) \T . Intuitively,
Outcomes(s, πT , πT , πs) comprises all the paths starting in s that may arise when team T processes
(and their descendants) stick to πT , team T processes (and their descendants) stick to πT , and
remaining non-determinism due to move proposals with equal delay is resolved by a scheduler
πs : FinPth(s)× 2M → M.

Formally, Outcomes(s, πT , πT , πs) is the set of infinite paths s0
m1−→ s1

m2−→ . . . such that s = s0

and for all i ≥ 1 there is a set of moves κi = {πT (p, s0
m1−→ . . . si−1) | p ∈ T } ∪ {πT (p, s0

m1−→
. . . si−1) | p ∈ dom(si−1) \ T } such that

i) mi = πs(s0
m1−→ . . . si−1, δj(κi)) and

ii) δ(si−1,mi)(si) > 0.

Zeno Behaviour We will rule out non-meaningful strategies that prevent divergence of time (zeno
behavior, cf. [4, 16]). For example, preventing a bad state by blocking time is not considered a
reasonable strategy. We define the set of blameless outcomes for team T as follows. Let again πT
be a joint strategy for team T and πT be a joint counter strategy to team T , both starting at state

s. BlamelessOutcomes(s, πT , πT) is the set of all non-divergent paths s0
m1−→ s1

m2−→ . . . such that

s = s0 and for all i ≥ 1 there is a set of moves κi = {πT (p, s0
m1−→ . . . si−1) | p ∈ T }∪ {πT (p, s0

m1−→
. . . si−1) | p ∈ dom(si−1) \ T } such that

i) mi ∈ δj(κi) and
ii) δ(si−1,mi)(si) > 0 and
iii) there is a k ∈ N such that for all l ≥ k: {(p, d, a) ∈ δj(κl) | p ∈ T } = ∅.

Intuitively, BlamelessOutcomes(s, πT , πT) comprises all the paths resulting from πT and πT
where moves of team T may occur in a finite prefix only.

Path Measure We define the probability measure P on sets of paths as follows. For any DPTGS,
joint strategy πT , joint counter strategy πT , and scheduler πs, all starting at state s, let InfPth

πT ,π
T
,πs(s) =

Outcomes(s, πT , πT , πs) and FinPthπT ,π
T
,πs(s) the set of all finite path prefixes thereof. Let F

πT ,π
T
,πs

s

be the smallest σ−algebra on InfPthπT ,π
T
,πs(s) which contains the sets {ω | ω ∈ InfPthπT ,π

T
,πs(s)∧

ω↑|ω
′|= ω′} for all ω′ ∈ FinPthπT ,π

T
,πs(s).

For finite paths ω ∈ FinPthπT ,π
T
,πs(s) with s = ω0, Prob : FinPthπT ,π

T
,πs(s) → [0, 1] is inductive

defined by Prob(ω) = 1, iff |ω| = 1 and Prob(ω) = Prob(ω′)·δ(last(ω′),m)(s′), iff ω = ω′ m
−→ s′. The

measure P on F
πT ,π

T
,πs

s is now the unique measure such that P({ω | ω ∈ InfPthπT ,π
T
,πs(s)∧ω↑|ω

′|=
ω′}) = Prob(ω′) (cylinder set construction, see e.g. [17]).

2.3 DCS++ Semantics

The semantics of a DCS++ model D = ({B1, . . . ,Bn},B0) will be given by a translation to a
DPTGS. To this end, we define (1.) the set of states induced by D, (2.) the induced actions of D,
(3.) the available moves of D per state, and (4.) the probabilistic transition relation when playing
a move in a state.

(1.) States A state of the resulting DPTGS comprises the configurations of all active processes. A
process configuration in turn is given by its location and the valuation of its variables. This will
be defined in the following. A link (clock) valuation is a function σL : L → 2Id (σX : X → R≥0).
For convenience, we will also refer to (type consistent) combined valuations σ : V → R≥0 ∪̇ 2Id.
By Σ(V) we denote the set of all combined valuations. We assume that expressions and boolean
constraints ζ have a type-consistent interpretation JζK(σ), given a valuation σ ∈ Σ(V), and write
σ |= ζ when JζK(σ) = true. We denote the effect of an assignment λ on σ by JλK(σ). By σ0 we
refer to the initial valuation that assigns each variable x ∈ dom(σ0) its initial value (i.e. 0 or
∅). A configuration of a process described by DCPTA Bi = (Qi, q

i
0,Vi, inv,M,R!

i,R
?
i) is a tuple

(q, σ) ∈ Qi ×Σ(Vi) of the current location q and valuation σ of the variables. For DCS++ model
D = ({B1, . . . ,Bn},B0), we set QD =

⊎n

i=0Qi, VD
=

⊎n

i=0 Vi, R
!
D
=

⊎n

i=0 R
!
i and R?

D
=

⊎n

i=0 R
?
i .

A state of D is a total function s : Id → {⊥} ∪̇ (QD ×Σ(V
D
)) mapping each identity p ∈ Id either

to ⊥ or to a configuration. The set of all states of D is denoted by S(D). An agent a is active in
s if s(a) 6= ⊥, and by dom(s) we refer to the set of all active agents in s. By sloc(p) and sval(p) we
refer to location q and valuation σ of process p in state s, respectively.

(2). Actions The actions are send edges and the idle action: A(D) = R!
D
∪̇ {⊖}.

(3). Available Moves Passage of time is represented by a simultaneous increase of the clock vari-
ables among all processes, hence clock increments are defined as s+d with (s+d)(p) = ⊥ iff s(p) =
⊥ and (s + d)(p) = (q, σ[c 7→ (σ(c) + d) | c ∈ X] iff s(p) = (q, σ). With this, in state s process
p is able to play a send action a = 〈q, lR, e, lP , ϕ, P 〉 after delay d if all receivers lR are able to
synchronize on message e after d. We define the receivable predicate as

rcvbl(s, (p, d, a)) = ∀p′ ∈ sval(p)(lR) \ {p} ∃ 〈(s+ d)loc(p
′), e, ϕ′, ·〉 ∈ R?

D
:

(s+ d)val(p
′) ∪ {snd 7→ {p}, param 7→ sval(p

′)(lP)} |= ϕ′

Note that this implements value matching and testing snd (e.g. against an expected sender identity)
as a precondition for synchronization. With this, a move (p, d, a) is called available in s iff it is
receivable and enabled in s after delay d, formally

avail(s, (p, d, a = 〈q, lR, e, lP , ϕ, ·〉)) =

rcvbl(s, (p, d, a)) ∧

(s+ d)val(p) |= ϕ ∧ (s+ d)loc(p) = q

Time Progress Condition Time progress in state s is limited by a conjunction over the location
invariants of all active processes in s. Formally, we define the set of urgent delays in state s by

urgent(s) =
{

d ∈ R≥0 | s+ d |= ¬
∧

p∈dom(s)

inv(sloc(p))
}

.

With these ingredients, we are able to define the set of available moves Γ(s) below.

(4.) Transition Relation Moves can be divided in three classes, describing transitions where time
passes only, a discrete step or inseparable first time passes by and then a discrete step takes place.
In general, the set of successor states after playing a move is determined by (i) the effect of the
update assignments and (ii) the probabilistic branches in the different DCPTAs.

(4.1) Update Assignments Locally, the simultaneous effect of assignments is well-defined because
each local variable may occur at most once as a left-hand side variable. Special care however
has to be taken for create assignments. In order to obtain a well-defined probability distribution
below, we require a deterministic semantics for the process creation, that is, we have to determine
which of the currently unused process identities is mapped to the new process configuration. Let
Λcr ⊆ Assign(V

D
∪ Prms) be the set of all create assignments in a DCS++ model D. Without loss

of generality, we require both Λcr and Id to be totally ordered sets. This allows us to define the
create binding depending on state s ∈ S(D) as an injective function βs : Λcr×Id → Id\dom(s)
that determines a unique identity for a pair (λcr , p), i.e. when executing a create assignment λcr
in process p. With this, the effect on a state s ∈ S(D) of create assignment λcr = create(B) with
left-hand side lc executed by process p is

J〈λcr, q
′〉Kp(s, βs) =

s[βs(λcr, p) 7→ (q0, σ0[self 7→ {βs(λcr, p)}])]

[p 7→ (q′, sval(p)[lc 7→ {βs(λcr, p)}]],

where (q0, σ0) is the initial configuration for DCPTA B.
The effect of a sequence of update assignments λ = λ̃1; . . . ; λ̃n of process p is then the simul-

taneous effect of all basic and create assignments occurring in it, i.e.,

J〈λ, q′〉Kp(s, βs) = J〈λ̃1, q
′
1〉Kp(. . . J〈λ̃n, q

′
n〉Kp(s, βs) . . . , βs),

where J〈λ̃, q′〉Kp(s, βs) = s[p 7→ (q′, Jλ̃K(sval(p)))] if λ̃ ∈ Assign0 is a basic update assignment.
For assignments λ occurring in receive edges, we by J〈λ, q′〉Kp(s, βs,m = (p′, ·, a)) denote the
effect of λ on s under move m by process p′, where a = 〈·, ·, e, lP , ·, ·〉. Here, update assignments
are evaluated considering also the values of the formal parameters induced by action a and the
senders configuration sval(p

′), that is, on the enhanced valuation sval(p) ∪ {snd 7→ {p′}, param 7→
sval(p

′)(lP)}. Note that the sender’s identity is explicitly assigned to snd.

(4.2) Probability Distribution A move m = (p, d, a = 〈q, lR, e, lP , ϕ, P 〉) applied to state s uniquely
determines a discrete probability distribution Ps,m ∈ µ(S). To see this, recall that there is no non-
deterministic choice among several receive edges. Thus in any process p′ ∈ sval(p)(lR) edge tp′ =

〈q′, e, ϕ′, P ′〉 ∈ R?
D
is triggered. We abuse notation and by P p′

s,m refer to distribution P ′ triggered

in state s by m in p′. The effect of an update J〈λ, q′〉K where the distributions {P, P p′

s,m}p′∈sval(p)(lR)

are ranging over, are deterministic and interference free by definition. Each 〈λ, q′〉 affects only the
process that is executing this update and the disjoint set of processes created by it. Thus there is
a bijection from the set of updates 〈λ, q〉 to the set of possible successor configurations (q′, σ) that
extends the distributions to range over S. The set of successor states is (unbounded but) finite as
only finitely many creations may occur.

Formally, probability distribution Ps,m(s′) is defined as shown in Fig. 4, where R = sval(p)(lR)

Ps,m(s′) =

∑

P (〈λ, q′〉) ·
∏

p′∈R

P p′

s,m(〈λp′ , q′p′〉) iff avail(s,m) ∧

s
′ ∈ J〈λ, q′〉Kp(. . . J〈λp′ , q′p′〉Kp′∈R(s, βs,m) . . . , βs),

where 〈λ, q′〉 ∈ dom(P) ∧ 〈λp′ , q′p′〉 ∈ dom(P p′

s,m)

0, otherwise

Fig. 4. Probability distribution induced by state s and a move m.

is the set of receivers triggered by m. If m is available in s, intuitively, Ps,m(s′) amounts to the
sum of the products of the weights determined by all updates available to sender p and (possible)
receivers p′ ∈ R, so that the effects yield state s′ under create binding βs. The update assignments
need not be permuted because they are by definition interference free.

DPTGS for DCS++ Using these definitions, a DCS++ model D describes the DPTGS JDK =
(S, Γ,Act, δ) with S = S(D), Act = A(D), Γ(s) =

{

(p, d, a) | p ∈ dom(s) ∧ ∄t ∈ urgent(s) : t < d ∧ avail(s, (p, d, a))
}

∪̇
{

(p, d,⊖) | p ∈ dom(s) ∧ ∀0 ≤ d′ ≤ d∄p′ ∈ dom(s) : (s+ d′)val(p
′) 2 inv(sloc(p

′))
}

is the set of available moves in state s, and δ(s,m) = Ps,m is the probabilistic transition relation
that depends on all the probability distributions of the edges triggered by move m in state s.

3 Specification Logic

In this section, we will describe our logic DPTATL which allows specifying properties of DCS++

models. The logic extends the alternating real-time aspects of TATL
∗ [16] with probabilistic and

topological reasoning, as introduced in PCTL [19] and Mett [8], respectively.

Syntax. Similar to TATL
∗, DPTATL is divided into state formulae and path formulae, whose

satisfaction is related to a state and a path, respectively. In the following, let A and C be finite
sets of logical agent and clock names, respectively. DPTATL state formulae are inductively defined
by:

(S1) ¬φ or φ ∨ φ′, for state formulae φ and φ′;
(S2) q(a) or l(a, a′), for a location q ∈ Q, link l ∈ L, and agents a, a′ ∈ A;

(S3) x+ d1 ≺ y + d2, for clocks x, y ∈ C, constants d1, d2 ∈ N0, and ≺∈ {<,≤};
(S4) ∀a : φ for agent a ∈ A and state formula φ;

(S5) a1 = a2, for agents a1, a2 ∈ A;
(S6) 〈〈a1, . . . , an〉〉≻p ψ, for agents ai ∈ A, a comparator ≻∈ {≥, >}, a probability p ∈ [0, 1], and

a path formula ψ;
(S7) 〈〈a | φa〉〉≻p ψ, for a comparator ≻∈ {≥, >}, a probability p ∈ [0, 1], a path formula ψ, and

a propositional state formula φa (i.e., φa is defined using rules (S1) and (S2) only) in which
only a is a free variable.

Rule (S1) corresponds to standard propositional logic. By rule (S2), we may query the location of
some agent and check whether two agents are connected via a link. Rule (S3) formalizes logical
clock constraints. Rules (S4) and (S5) add first-order quantification and test for equality of agents,
respectively. By rule (S6), we introduce probabilistic strategy quantification. Finally, rule (S7)
provides a second-order style strategy quantifier where the team of agents is characterized by a
state formula φa. DPTATL path formulae are defined by:

(P1) any state formula;

(P2) ¬ψ or ψ ∨ ψ′, for path formulae ψ and ψ′;
(P3) x ·ψ, for clock x ∈ C and path formula ψ;

(P4) Ba : ψ for agent a ∈ A and path formula ψ;
(P5) ψ1 Uψ2, for path formulae ψ1 and ψ2.

As usual, rules (P1) and (P2) integrate state formulae and standard propositional logic. Rule
(P3) adds a freeze quantifier that sets a clock variable for a given sub-formula, and rule (P4)
introduces the birth quantifier Bthat bounds an agent to a fresh identity for a given sub-formula.
Rule (P5) is the standard temporal until operator. We assume the usual abbreviations for true,
false, ∧ (conjunction), ∃ a : φ (existential quantification), F (finally), and G (globally). Moreover,
we set Q(a) =

∨

q∈Q q(a) for a set of locations Q. If Q denotes the set of all locations of some
DCPTA B, we can use this expression to state the agent’s type, written as a isB. Finally, we use
the freeze quantifiers from (P3) to obtain time-bounded temporal operators by writing F≤d ψ for
x ·

(

F y ·(ψ ∧ y ≤ x+ d)
)

.

Semantics. The semantic foundation of DPTATL is based on TATL∗ [16]. To this end, we import
the notion of game time for paths of a DPTGS S = (S, Γ,Act, δ). Intuitively, the game time is used
to refer to the rounds of a path. As we allow moves of zero delay, several rounds of a path may
have the same physical time. A game time [16] τ of a path ω, written as τ ∈ GameTimes(ω), is
represented by a tuple 〈t, k〉, where t ∈ R≥0 is a physical time and k ∈ N0 refers to the kth round
at t. For a path ω, the set of game times is defined as

GameTimes(ω) =
{

〈t, k〉 ∈ R≥0 ×N0 | 0 ≤ k < |{j ∈ N0 | time(ω, j) = t}|
}

.

We assume a lexicographical order over game times. Furthermore, for a path ω ∈ InfPth and
a game time 〈t, k〉 ∈ GameTimes(ω), we define ω〈t,k〉 = ωj+k , for the smallest j ∈ N0 with
time(ω, j) = t to refer to ω’s game state at 〈t, k〉.

We define the semantics of DPTATL state formulae over tuples of the form (s, t, C,A), where
s ∈ S is a state of S, t ∈ R≥0 is a physical time, C : C → R≥0 is a valuation of logical clock
variables, and A : A→ Id is a valuation of logical agent variables, as follows:

JS2K (s, t, C,A) |= q(a) iff sloc(A(a)) = q;

JS2K (s, t, C,A) |= l(a, a′) iff A(a′) ∈ sval(A(a))(l);

JS3K (s, t, C,A) |= x+ d1 ≤ y + d2 iff C(x) + d1 ≤ C(y) + d2;

JS4K (s, t, C,A) |= ∀a : φ iff ∀p ∈ Id : s(p) 6= ⊥ ⇒ (s, t, C,A[a 7→ p]) |= φ;

JS5K (s, t, C,A) |= a1 = a2 iff A(a1) = A(a2);

JS6K (s, t, C,A) |= 〈〈a1, . . . , an〉〉≻p ψ, iff the team T = {A(a1), . . . ,A(an)} has a strategy πT
starting at state s such that for any counter strategy πT and scheduler πs starting at s:
P(Outcomes(s, πT , πT , πs) ∩({ω ∈ Timediv | (ω, 〈0, 0〉, t, C,A) |= ψ}∪BlamelessOutcomes(s, πT , πT))) ≻
p;

JS7K (s, t, C,A) |= 〈〈a | φa〉〉≻p ψ, analogously to JS6K with team T defined as the set {p ∈ dom(s) |
(s, t, C,A[a 7→ p]) |= φa}.

Strategy quantification requires that a team of agents can enforce the satisfaction of the path
formula ψ with a probability ≻ p. The two rules only differ in the determination of the teams:
(S6) explicitly gives a set of agent variables, and (S7) denotes the team by an open state formula
φa. Note that we measure the probability of those time-divergent outcomes which are winning for
ψ, and those time-convergent ones for which no team T agent is to blame for.

We define the semantics of DPTATL path formulae over tuples of the form (ω, τ, t, C,A), where
ω ∈ InfPth is a suffix of a path of S, τ ∈ GameTimes(ω) is a game time referring to a round in ω,
C : C → R≥0 and A : A→ Id are valuations of logical clock and agent variables as follows:

JP1K (ω, 〈u, k〉, t, C,A) |= φ iff (ω〈u,k〉, t+ u, C,A) |= φ;

JP3K (ω, 〈u, k〉, t, C,A) |= x ·ψ iff (ω, 〈u, k〉, t, C[x 7→ t+ u],A) |= ψ;

JP4K (ω, τ, t, C,A) |= Ba : ψ iff ∃p ∈ Id :
(

∀τ ′ < τ : ωτ ′

(p) = ⊥
)

∧ ωτ (p) 6= ⊥ ∧ (ω, τ, C,A[a 7→ p]) |= ψ;

JP5K (ω, τ, t, C,A) |= ψ1 Uψ2 iff ∃τ ′ : τ ≤ τ ′ ∧ (ω, τ ′, t, C,A) |= ψ2

∧ ∀τ ′′ : τ ≤ τ ′′ < τ ′ ⇒ (ω, τ ′′, t, C,A) |= ψ1.

The definitions for propositional part of the logic are canonical. Note that the birth query (P4)
becomes true iff a fresh identity is bound to the agent a ∈ A such that the corresponding path
formula ψ is satisfied.

Satisfaction Relation Let D = ({B1, . . . ,Bn},B0) be a DCS++ model. Its initial state s0 in the
corresponding DPTGS JDK is defined by dom(s0) = {p} with p being the minimal element of Id
and s0(p) = (q0, σ0[self 7→ p]) where q0 is the initial location of B0 and σ0 its initial valuation.
Then D satisfies a closed DPTATL formula φ, denoted as D |= φ, if (s0, 0, C0,A0) |= φ, where C0
initializes all clock variables of φ to zero and A0 is the empty agent valuation.

4 Example

Routing in dynamic networks occurs in a multitude of modern applications, including intelligent
transportation systems, telephone networks and data network streams. In the following we present
a DCS++ model of adaptive packet routing in a dynamic network, where all the features combined
in DCPTA (DPTGS) and DPTATL become essential. In dynamic networks, a varying number of
nodes form dynamically changing communication topologies over time. Throughput and reliability
of the network are crucial and require to factor in real-time as well as probabilistic aspects. At design
time, given a still incomplete design, realizability of (quality of service) properties such as “the team
of all nodes in the network is able to ensure with probability p to eventually route each packet within
time t” have to be observed. The monolithic formalism of PTAs aims at real-time-probabilistic
system aspects, but it lacks of explicit treatment of dynamic changing communication topologies
and modular modeling of the processes making up the system. The logic PTCTL, typically applied
to PTA, is no alternating logic and does not consider dynamic aspects.

In our model, over time, a dedicated environment process populates the dynamic network
by creation of new node and link processes. The latter allows us to explicitly model error-prone
(wireless) connections between nodes and thus to incorporate quantitative phenomena such as
different probabilities of data packet loss. A link may be forced into a ‘sabotaged mode’ by the
environment which results in a temporary decrease of its reliability and throughput. Also triggered
by the environment, addressed data packets are transmitted from a source node to a target node,
passing a sequence of intermediate links and nodes.

Note that most of the DCPTA comprise time and action non-determinism. The nodes, for
example, are free to route packets to any of their outgoing links and the environment is free to
arbitrarily schedule the tasks of creation, link sabotage and packet transmission (up to timing
constraints ensuring minimal delays between sequent tasks). As we will see below, the strategy
quantor of DPTATL determines a team of controllable processes, whose non-deterministic choices
may (or may not) suffice to establish an objective.

q0

q6

q7

q8

q9 q10

q11

q12

q13

q14

q1

q2

q3

q4

q5

lsrc!edeliver(lp)/
c1 = 0

[ltop 6= ∅]ltop!epick

?echeck/
ltrgt = param

lp!einit(ltrgt)

ltop!epick

?echeck/
lsrc = param

[ltop = ∅]
[c1 > cTTCPA]

lp = create BPacket

ln!einitl(ll)

ln!einitr(lr)/
lb = create BBucket

lb!einitn(ln)

lb!einitb(ltop)/
ltop = lb

[c2 > cTTCPR]
ll = create BLink;
lr = create BLink;
ln = create BNode;

ltop!epropagate(ln)/c2 = 0

[c0 > cTTNS]

[ltop 6= ∅]
ltop!epick

?echeck/
ltrgt = param

ltrgt!esabotage/c0 = 0

[ltop = ∅]

Fig. 5. BEnv

Model The environment process BEnv (cf. Fig. 5) maintains all nodes in the network in a bucket
list and repeatedly performs the following three tasks:

(1) Node Creation: At most every cTTCPR (time to create process) time units, a new node
is initialized with two new link processes. Then, a new bucket process is created and initialized
with the newly created node. After this, the new bucket is inserted into the bucket list. Finally, all

q0 q1

q2

q5 q6

q3 q4

?einitl/
ll = param

?einitr/
lr = param

?edeliver/
lp = param

?eannounce/
ln = param

?esabotage

ll!esabotage

lr!esabotage

ll!eroute(lp)

lr!eroute(lp)

lp!echeck

ll!edesignate(ln)

lr!edesignate(ln)

Fig. 6. BNode

q0

q1

q2

?einit/
lt = param

[snd = lt]
?echeck

Fig. 7. BPacket

nodes in the network are made aware of the appearance of the new node by sending a propagate
message to the head of the bucket list, attaching the newly created node as parameter.

(2) Packet Transmission: At most every cTTCPA (time to create packet) time units, a new
packet is created. A target node is picked from the bucket list by sending a pick message to the
head of the list and awaiting a check message from some bucket in the list. The check message
then contains the picked target node attached as parameter. The new packet is then initialized
with the target node. Finally, a source node is picked in the same manner as the target node and
a deliver message, with the packet attached, is send to the picked source node.

(3) Link Sabotage: Links may be of decreased reliability and throughput in routing packets
through them. For link sabotage, at most every cTTNS (time to next sabotage) time units, a
sabotage message is sent to a node from the bucket list. The node forwards the message to both of
its outgoing links, resulting in a time bounded switch to the degraded sabotage mode of the link
processes.

A node process (cf. Fig. 6) is initialized with two link processes (not pointing to any node yet).
If an initialized node receives a deliver message (either from another node or from the environment)
with a packet attached as parameter, it can choose to either send a check message to the packet,
or to route the packet to one of its outgoing links by sending a route message. If the node receives
an announce message with a newly created node as parameter, it can update one of its outgoing
links to this node and thereby change the network topology.

A link process (cf. Fig. 8) may receive a designate message with a node attached as parameter.
This node then becomes the target node of the link. A link is either in ‘normal mode’ (q0, q1) or in
‘sabotage mode’ (q2, q3). The sabotage mode is triggered by reception of a sabotage message from
the environment. The two modes specify different probabilities of message loss and different time
intervals (denoted by constants minFTN, maxFTN and minFTS, maxFTS, respectively) in which a
packet, received by a route message, can be transmitted to the next node on the path to the target
node of the packet. A link has to stay in sabotaged mode for at least cTTR (time to recover) time
units.

q0 q2q1 q3

[c0 < maxFTN] [c0 < maxFTS]

?esabotage/
c1 = 0

[c1 > cTTR]

?edesignate/
ln = param

?edesignate/
ln = param

[c0 > minFTN]
ln!edeliver(lp)/

c0 = 0

[c0 > minFTS]
ln!edeliver(lp)/

c0 = 0

?eroute
0.9

lp =
param

0.1
?eroute

0.8
lp =
param

0.2

Fig. 8. BLink

q0 q1

q2

q5

q4 q3

?einitn/
le = snd; ln = param;

[le = snd]?einitb/lb = param

?epick
?epropagate/
lm = param

ln!eannounce(lm)
[lb = ∅]

[lb 6= ∅]lb!epropagate(lm)

[lb = ∅]

[lb 6= ∅]/lb!epick

le!echeck(ln)

Fig. 9. BBucket

A packet process (cf. Fig. 7) is first initialized with a target node, i.e. the node where the
packet is supposed to be routed to. It then waits for reception of a check messages during its route
through the network. In case the designated target node is the sender of the message, the packet
process enters terminal location q2 and thereby ‘disappears’.

A bucket process (cf. Fig. 9) serves as an item in the bucket list. The link variables ln and lb
hold the identity of a node process and the next bucket in the list (if any), respectively. In case a
bucket receives a pick message, it can choose to either send a check message to the environment
or to forward the pick message to the next bucket in the list, if any. In case a bucket receives a
propagate message with a node attached, it sends an announce message to its target node with the
received node attached as parameter, and forwards the propagate message to the next bucket in
the list, if any. That is, a propagate message ‘travels’ along the whole list whereas a pick message
is free to travel up to any bucket in the list. Whenever the environment and all buckets play in the
same team, pick allows the environment to control the choice of a single node, whereas propagate
enforces the transmission of a node to all nodes in the list.

Requirements We now demonstrate how requirements for the DCS++ routing model can be for-
malized in DPTATL in a compact and elegant manner.

〈〈a | a isBEnv〉〉=1 GF≤cTTCPR
Ba′ : true (1)

∀a′ isBPacket : 〈〈a | a 6= a′〉〉>0.5 F≤20s q2(a
′) (2)

∀a isBNode : G
(

〈〈a〉〉>0 ¬F ∃a′ : (ll(a, a
′)∨lr(a, a

′))
)

(3)

Formula (1) expresses that the singleton team, consisting of the environment only, can certainly
ensure that in each state, a new agent a′ is created after at most cTTCPR time units. Formula
(2) expresses that for each packet a′, the team of all agents except a′ can ensure with probability
greater than 50% that, after at most 20 seconds, packet a′ is in terminal location q2. Formula
(3) expresses that for each node a, it is always the case that a alone can ensure with positive
probability that none of its links points to some agent a′. Finally, the routing requirement from
above, that is, the team of all nodes can always ensure with probability greater or equal 80% to
(successfully) route each packet within 120 seconds, can be formalized in DPTATL as

G
(

〈〈a | a isBNode〉〉≥0.8 ∀a′ isBPacket : F≤120s q2(a
′)
)

5 Conclusion

Systems of systems (SoS) comprising a varying number of communicating processes are a preva-
lent class of complex and often safety critical systems that call for a rigid formal model-based
design process. As of yet, only singular SoS aspects can be expressed by different modeling and
requirement specification languages. In this paper, we propose a game-theoretic modeling and re-
quirement specification framework that unifies all relevant aspects of SoS: modularity, real-time-,
probabilistic- and dynamic behavior. The framework is unique in that it is a thoroughly designed
concise orthogonal extension of well-known formalisms (and combinations thereof). By this, our
work does also serves as a survey and meta-model for the relevant existing formalisms.

The framework lays the foundation for developing verification algorithms and tools for SoS.
Existing techniques can be used whenever the restrictions to one of the integrated sublanguages
apply. For analysing the full language, we currently investigate the decomposition of formal ver-
ification tasks (a corresponding article has been accepted for publication [13]). Also, we adapt
finitary abstraction techniques to treat the inherent unboundedness in the number of processes
(c.f. [25, 24]).

References

1. Alur, R., Courcoubetis, C., Dill, D.L.: Model-checking in dense real-time. Inf. Comput. 104(1) (1993)
2. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235 (1994)
3. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. Journal of the ACM 49

(2002)
4. de Alfaro et. at., L.: The element of surprise in timed games. In: Amadio, R.M., Lugiez, D. (eds.)

CONCUR. LNCS, vol. 2761, pp. 142–156. Springer (2003)
5. Attie, P.C., Lynch, N.A.: Dynamic input/output automata. In: Larsen, K.G., Nielsen, M. (eds.) CON-

CUR. LNCS, vol. 2154, pp. 137–151. Springer (2001)
6. Baier, C., Brázdil, T., Größer, M., Kucera, A.: Stochastic game logic. In: QEST. IEEE Computer

Society (2007)
7. Baier, C., Ciesinski, F., Größer, M.: Probmela: a modeling language for communicating probabilistic

processes. In: MEMOCODE. pp. 57–66. IEEE (2004)
8. Bauer, J., Schaefer, I., Toben, T., Westphal, B.: Specification and verification of dynamic communi-

cation systems. In: Goossens, K., Petrucci, L. (eds.) ACSD 2006. IEEE, Turku, Finland (Jun 2006)
9. Behrmann, G., David, A., Larsen, K.G., Mller, O., Pettersson, P., Yi, W.: Uppaal - present and

future. In: Proc. of 40th IEEE Conference on Decision and Control. IEEE Computer Society Press
(2001)

10. Bohnenkamp, H.C., D’Argenio, P.R., Hermanns, H., Katoen, J.P.: Modest: A compositional modeling
formalism for hard and softly timed systems. IEEE Trans. Software Eng. 32(10), 812–830 (2006)

11. Brand, D., Zafiropulo, P.: On Communicating Finite-State Machines. J. ACM 30(2), 323–342 (1983)
12. Chen, T., Lu, J.: Probabilistic alternating-time temporal logic and model checking algorithm. In: Lei,

J. (ed.) FSKD (2). pp. 35–39. IEEE Computer Society (2007)
13. Damm,W., Peter, H.J., Rakow, J., Westphal, B.: Can we build it: Formal synthesis of control strategies

for cooperative driver assistance systems. Mathematical Structures in Computer Science, Special Issue
on Practical and Lightweight Formal Methods for the Design, Modeling and Analysis of Software
Systems (2011), accepted for publication

14. Distefano, D., Katoen, J.P., Rensink, A.: On a temporal logic for object-based systems. In: Smith,
S.F., Talcott, C.L. (eds.) FMOODS. vol. 177. Kluwer (2000)

15. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal Aspects of Com-
puting 6, 102–111 (1994)

16. Henzinger, T.A., Prabhu, V.S.: Timed alternating-time temporal logic. In: Asarin, E., Bouyer, P.
(eds.) FORMATS. LNCS, vol. 4202, pp. 1–17. Springer (2006)

17. Katoen, J.P., Baier, C.: Principles of Model Checking. MIT Press (2008)
18. Kwiatkowska, M., Norman, G., Sproston, J., Wang, F.: Symbolic model checking for probabilistic

timed automata. Information and Computation 205(7) (2007)
19. Kwiatkowska, M.Z., Norman, G., Segala, R., Sproston, J.: Automatic verification of real-time systems

with discrete probability distributions. Theor. Comput. Sci. 282(1), 101–150 (2002)

20. Kwiatkowska, M.Z., Norman, G., Trivedi, A.: Quantitative games on probabilistic timed automata.
CoRR abs/1001.1933 (2010)

21. Milner, R.: The Pi Calculus. CU Press (1999)
22. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley-

Interscience (1994)
23. Rozenberg, G. (ed.): Handbook of Graph Grammars and Computing by Graph Transformations,

Volume 1: Foundations. World Scientific (1997)
24. Toben, T.: Analysis of Dynamic Evolution Systems by Spotlight Abstraction Refinement. Ph.D. thesis,

Carl von Ossietzky Universität Oldenburg, Germany (2009)
25. Westphal, B.: Specification and Verification of Dynamic Topology Systems. Ph.D. thesis, Carl von

Ossietzky Universität Oldenburg, Germany (2008)
26. Yahav, E., Reps, T., Sagiv, M., Wilhelm, R.: Verifying temporal heap properties specified via evolution

logic. In: In ESOP 2003, LNCS. pp. 204–222 (2003)
27. Yi, W.: Real-time behaviour of asynchronous agents. In: Baeten, J.C.M., Klop, J.W. (eds.) CONCUR.

LNCS, vol. 458, pp. 502–520. Springer (1990)

