AVACS* Automatic Verification and Analysis of Complex Systems

Werner Damm

AVACS coordinator

*www.avacs.org
Transregional Collaborative Research Center
funded by the German Science Foundation SFB-TR 14
1.1.2004 – 31.12.2015 total funding ≈30 Mill €

The Application Context

- Complex Embedded Systems are key enablers for safe flight and safe ground transportation
- Exponential growth in system complexity is a challenge for quality assurance
- AVACS contributes to meeting forthcoming requirements of pertinent safety standards on use of formal analysis methods
- Methods and tools cover large class of "cyber physical systems" seen to be highly relevant for addressing societal challenges (health, security, green mobility, ...)

Automatic Verification of Complex Systems: Models

- Extremely Heterogeneous Model Space
 - Systems of Systems
 - **–**
 - Cycle Accurate models of HW
- Comprehensive and Scalable Verification requires
 - Relating Models at different Design Levels
 - Identification of typical model characteristic

Requirements

Heterogeneous Requirement Space

Reliability

"probability of total a/c failure is less than 10⁻⁹ per flight hour"

Coordination

"Crossing will grant access if secured"

Local Control

"The train will never run faster than permitted speed"

"enforce brake profile"

Real-Time

"When receiving unconditional emergency stop message the trair shall be tripped within 5 msec"

"Brake curve control task activated every 30 msecs"

The AVACS Vision

To Cover the Model- and Requirement Space of Complex Safety Critical Systems

with Automatic Verification Methods

Giving Mathematical Evidence of Compliance of Models

To Dependability, Coordination, Control and Real-Time Requirements

AVACS Competence Layers

Complex Systems Embedded Transportation Applications

Models of Complex Systems

real-time - hybrid - distributed systems - system of systems

Combining V&A Technology

 $(x_1 \wedge x_2 \wedge ... x_n \text{ for } s)$ $x_i \in V&A \text{ core technologies}, s \in \text{ systems}$

ALBERT-LUDWIGS JN<u>IVERSITÄT FREIBURG</u>

V&A Core Technologies

Abstraction – Decision Diagrams – Constraint Solving – Heuristic Search Linear Programming – Model Checking – Lyapunov Method Abstract Interpretation – SMT – Decision Procedures Research
Areas
R
Real-Time

H Hybrid

DES SAARLANDES

UNIVERSITAT

Coarse
Grain
System
Structure