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Example: Ball on String
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Equations of Motion

• dynamics in freefall when x ≥ xr, with mass m,

mẍ = Fg = −mg.

• dynamics in extension when x ≤ xr, with spring
constant k, damping factor d,

mẍ = Fg + Fs = −mg + kxr − kx − dẋ.

• transition when x = xr + L, collision factor c ∈ [0, 1],

ẋ′ = −cẋ.
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Hybrid Automaton Model

auxiliary variable v = ẋ, so v̇ = ẍ.

clip from SpaceEx Model Editor1

1 G. Frehse, C. L. Guernic, A. Donzé, R. Ray, O. Lebeltel, R. Ripado, A. Girard, T. Dang,
and O. Maler, “Spaceex: Scalable verification of hybrid systems,” in CAV’11, ser. LNCS,
Springer, 2011. 6



Behavior
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Hybrid Automata (Alur, Henzinger, ’95)[2][3]

• locations Loc = {ℓ1, . . . , ℓm} and variables
X = {x1, . . . , xn} define the state space Loc × RX,

• transitions Edg ⊆ Loc × Lab × Loc define location
changes with synchronization labels Lab,

• invariant or staying condition Inv ⊆ Loc × RX,
• flow relation Flow, where Flow(ℓ) ⊆ RẊ × RX, e.g.,

ẋ = f(x);

• jump relation Jump, where Jump(e) ⊆ RX × RX′ , e.g.,

Jump(e) = {(x, x′) | x ∈ G ∧ x′ = r(x)},

• initial states Init ⊆ Inv.

9



Run Semantics

(ℓ0, x0)
δ0,ξ0−−→ (ℓ0, ξ0(δ0))

α0−→ (ℓ1, x1)
δ1,ξ1−−→ (ℓ1, ξ1(δ1)) . . .

with (ℓ0, x0) ∈ Init, αi ∈ Lab ∪ {τ}, and for i = 0, 1, . . .:

1. Trajectories: (ξ̇(t), ξ(t)) ∈ Flow(ℓ) and ξi(t) ∈ Inv(ℓi)

for all t ∈ [0, δi].
2. Jumps: (ξi(δi), xi+1) ∈ Jump(ei),

ei = (ℓi, αi, ℓi+1) ∈ Edg, and xi+1 ∈ Inv(ℓi+1).

A state (ℓ, x) is reachable if there exists a run with
(ℓi, xi) = (ℓ, x) for some i.
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Example: Ball on String
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Set-Based Reachability

Extending numerical simulation from numbers to sets

• account for nondeterminism
• exhaustive
• infinite time horizon

Downsides:

• only approximate for complex dynamics
• generally not scalable in # of variables
• trade-off between runtime and accuracy

13



Reachability Algorithm

One-step successors by time elapse from set of states S,

PostC(S) =
{
(ℓ, ξ(δ))

∣∣ ∃(ℓ, x) ∈ S : (ℓ, x) δ,ξ−→ (ℓ, ξ(δ))
}
.

One-step successors by jump from set of states S,

PostD(S) =
{
(ℓ′, x′)

∣∣ ∃(ℓ′, x′) ∈ S,∃α ∈ Lab ∪ {τ} :

(ℓ, x) α−→ (ℓ′, x′)
}
.
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Reachability Algorithm

Compute sequence

R0 = PostC(Init),
Ri+1 = Ri ∪ PostC(PostD(Ri)).

If Ri+1 = Ri, then Ri = reachable states.

• may not terminate if states unbounded (counter)
• problem undecidable in general2

2 T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya, “What’s decidable about hybrid
automata?” Journal of Computer and System Sciences, vol. 57, pp. 94–124, 1998. 15



Ball on String: Reachable States

(clip from SpaceEx output)
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HA with piecewise constant dynamics (PCDA, LHA)

• initial states and invariants given by conjunctions of linear
constraints,

• flows given by conjunctions of linear constraints over the
derivatives Ẋ, and

• jumps given by linear constraints over X ∪ X′, where X′

denote the variables after the jump.

One-step successors of PCDA can be computed exactly.

17



Polyhedra in Constraint Form

H-polyhedron (constraint form)

P =
{
x
∣∣∣ ∧m

i=1
aT

ix ≤ bi

}
,

with facet normals ai ∈ Rn and inhomogeneous
coefficients bi ∈ R.

vector-matrix notation:

P =
{
x
∣∣∣ Ax ≤ b

}
, with A =

(
aT

1
...
aT

m

)
,b =

(
b1
...

bm

)
.
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Geometric Operations

0 0.2 0.4 0.6 0.8 100.20.40.60.81

x1

x2

Q
pos(Q)

x1

x2

P

Q

P ⊕Q

The convex hull
chull(Q) =

{∑
qi∈Q λi · qi

∣∣∣ λi ≥ 0,
∑

i λi = 1
}
,

The cone of Q is pos(Q) = {q · t | q ∈ Q, t ≥ 0}.

The Minkowski sum is P ⊕Q = {p+ q | p ∈ P ,q ∈ Q}.
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Polyhedra in Generator Form

V-polyhedron (generator form)

P = (V,R) = chull (V)⊕ pos(chull(R)).

with vertices V ⊆ Rn and rays R ⊆ Rn

conversion between H- and V-polyhedra is expensive

cube: 2n constraints, 2n vertices

cross-polytope (diamond): 2n vertices, 2n constraints

20



Time Elapse with Polyhedra

For PCDA, it suffices to consider straight-line trajectories:

Lemma (Constant Derivatives3)

There is a trajectory ξ(t) from x = ξ(0) to x′ = ξ(δ), δ > 0, iff
η(t) = x+ qt with q = (x′ − x)/δ is a trajectory from x to x′.

3 P.-H. Ho, “Automatic analysis of hybrid systems,” Technical Report CSD-TR95-1536,
PhD thesis, Cornell University, Aug. 1995. 21



Time Elapse with Polyhedra

Given polyhedra P = {x | Ax ≤ b}, Q = {q | Āq ≤ b̄}

Time successors (without invariant):

P↗Q = {x′ | x ∈ P ,q ∈ Q, t ∈ R≥0, x′ = x+ qt}.

Eliminating q = x′−x
t for t > 0 and multiplying with t:

P↗Q =
{
x′
∣∣∣ Ax ≤ b ∧ Ā(x′ − x) ≤ b̄ · t ∧ t ≥ 0

}
.

Quantifier elimination of t squares the number of constraints.
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Time Elapse with Polyhedra – Geometric Version

x1
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Q
pos(Q)

(a) cone pos(Q)

x1

x2

P

P ⊕ pos(Q)

(b) P↗Q = P ⊕ pos(Q)

Intersect with invariant:

postC(ℓ× P) = ℓ×
(
P↗Flow(ℓ)

)
∩ Inv(ℓ).
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Discrete Successors

Edge e = (ℓ, α, ℓ′) with guard x ∈ G and nondeterministic
assignment x′ = Cx+w, w ∈ W,

postD(ℓ× P) = ℓ′ ×
(
C(P ∩ G)⊕W

)
∩ Inv(ℓ′).

If linear map C singular, constraints require quantifier
elimination, otherwise

CP = {x | AC−1x ≤ b}

24



Computational Cost

polyhedra
operation m constraints k generators

cone m2 k
Minkowski sum exp k2

linear map m / exp k
intersection 2m exp

25



Complex Behavior in PCDA

36

Linear Hybrid Automata

Ɣ chaos
– even with 1 variable, 1 location, 1 transition (tent map)
– observed in actual production systems [Schmitz,2002]

states of the Tent map
source: wikipedia

Schmitz, J. P. M., D. A. Van Beek, and J. E. Rooda. "Chaos in discrete production systems?." Journal of Manufacturing Systems 21.3 
(2002): 236-246.c

brewery and chaotic throughput [Schmitz,2002]

26
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Example: Multi-Product Batch Plant
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Example: Multi-Product Batch Plant 

Ɣ Cascade mixing process
– 3 educts via 3 reactors 

� 2 products

Ɣ Verification Goals
– Invariants 

• overflow
• product tanks never empty

– Filling sequence

Ɣ Design of verified 
controller 

LIS
11

M
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22

QIS
22

LIS
32

LIS
31

M

LIS
23

QIS
23

M

LIS
21
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21
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13

LIS
12

28



42

Verification with PHAVer

Ɣ Controller + Plant
– 266 locations, 823 transitions

(~150 reachable)
– 8 continuous variables

Ɣ Reachability over infinite time
– 120s—1243s, 260—600MB
– computation cost increases

with nondeterminism
(intervals for throughputs, 
initial states)

Controller Controlled Plant

29
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Verification with PHAVer
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Piecewise Affine Dynamics

Hybrid automata with piecewise affine dynamics (PWA)

• initial states and invariants are polyhedra,
• flows are affine ODEs

ẋ = Ax+ Bu, u ∈ U ,

• jumps have a guard set and assignments

x′ = Cx+w, w ∈ W .

32



Continuous successors

ẋ = Ax+ Bu, u ∈ U ,

trajectory ξ(t) from ξ(0) = x0 for given input signal ζ(t) ∈ U :

ξx0,ζ(t) = eAtx0 +

∫ t

0
eA(t−s)Bζ(s)ds.

reachable states from set X0 for any input signal:

Xt = eAtX0 ⊕ Yt,

Yt =

∫ t

0
eAsUds = eAtX0 ⊕ lim

δ→0

⌊t/δ⌋⊕
k=0

eAδkδU .

33



Computing a Convex Cover

X0

Ω0

Xδ

Ω1

X2δ

Ω2

Compute Ω0,Ω1, . . . such that∪
0≤t≤T

Xt ⊆ Ω0 ∪ Ω1 ∪ . . . .
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Time Discretization

X0
Ω0

Xδ

Ω1

X2δ

Ω2

Semi-group property: (Xkδ)δ = X(k+1)δ

Time discretization: X(k+1)δ = eAδXkδ ⊕ Yδ.

Given initial approximations Ω0 and Ψδ such that∪
0≤t≤δ

Xt ⊆ Ω0, Yδ ⊆ Ψδ,

Xt is covered by the sequence

Ωk+1 = eAδΩk ⊕Ψδ.
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Initial Approximations

X0

Xδ

Ω0

(a) convex hull and pushing facets (b) convex hull and bloating
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Initial Approximations – Forward Bloating

Bloating based on norms:4

Ω0 = chull(X0 ∪ eAδX0)⊕ (αδ + βδ)B,
Ψδ = βδB,
αδ = µ(X0) · (e∥A∥δ − 1 − ∥A∥δ),
βδ = 1

∥A∥µ(BU) · (e∥A∥δ − 1),

with radius µ(X ) = maxx∈X∥x∥ and unit ball B.

4 A. Girard, “Reachability of uncertain linear systems using zonotopes,” in HSCC, 2005,
pp. 291–305. 37



Initial Approximations – Forward Bloating

X0

Ω̂0

Xδ

Ω̂1

X2δ

Ω̂2

Forward bloating is tight on X0 and bloated on Xδ.

Improvements:

• intersect forward bloating with backward bloating
• bloat based on interpolation error (shown before)
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Wrapping Effect

X0

eAδX0

Appr(eAδX0)

Appr(eAδAppr(eAδX0))

(a) with wrapping effect

X0

eAδX0

Appr(eAδX0)
Appr(eA2δX0)

(b) using a wrapping-free algorithm

avoid increasing complexity through approximation

Ω̂k+1 = Appr(eAδΩ̂k ⊕Ψδ).

wrapping effect: error accumulation
39



Wrapping Effect

Solution: Split sequence5

Ψ̂k+1 = Appr(eAkδΨδ)⊕ Ψ̂k, with Ψ̂0 = {0},
Ω̂k = Appr(eAkδΩ0)⊕ Ψ̂k.

satisfies Ω̂k = Appr(Ωk) (wrapping-free) if

Appr(P ⊕Q) = Appr(P)⊕ Appr(Q),

e.g., bounding box.

5 A. Girard, C. L. Guernic, and O. Maler, “Efficient computation of reachable sets of linear
time-invariant systems with inputs,” in HSCC, 2006, pp. 257–271. 40
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Polyhedra

X0

Ω0

Xδ

Ω1

X2δ

Ω2

polyhedra
operation m constr. k gen.

convex hull exp 2k
Minkowski sum exp k2

linear map m / exp k
intersection 2m exp

42



Ellipsoids6

X0

Ω̂0

Xδ

Ω̂1

X2δ

Ω̂2

polyhedra ellipsoids
operation m constr. k gen. n × n matrix

convex hull exp 2k approx
Minkowski sum exp k2 approx
linear map m / exp k O(n3)

intersection 2m exp approx

6 A. B. Kurzhanski and P. Varaiya, Dynamics and Control of Trajectory Tubes. Springer,
2014. 43



Zonotopes

v1
v2

v3

v4
c

Zonotope with center c ∈ Rn and generators v1, . . . , vk ∈ Rn

P =

{
c+

∑k

i=1
αivi

∣∣∣∣ αi ∈ [−1, 1]
}
.

linear map: map center and generators
Minkowski sum: add centers, take union of generators
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Zonotopes7

X0

Ω̂0

Xδ

Ω̂1

X2δ

Ω̂2

polyhedra ellipsoids zonotopes
operation m constr. k gen. n × n matrix k generators

convex hull exp 2k approx approx
Minkowski sum exp k2 approx 2k
linear map m / exp k O(n3) k
intersection 2m exp approx approx

7 A. Girard, “Reachability of uncertain linear systems using zonotopes,” in HSCC, 2005,
pp. 291–305. 45



Support Functions

dρP(d)

P

0

(a) support function in direction d

d3

d4

d1

d2

P

⌈P⌉D

(b) outer approximation

support function = linear optimization (efficient!)

ρP(d) = max{dTx | x ∈ P}.

computed values define polyhedral outer approximation

⌈P⌉D =
∩
d∈D

{
dTx ≤ ρP(d)

}
.
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Support Functions

dρP(d)

P

0

(a) support function in direction d

d3

d4

d1

d2

P

⌈P⌉D

(b) outer approximation

• linear map: ρMX (ℓ) = ρX (MTℓ), O(mn),
• convex hull: ρchull(P∪Q)(ℓ) = max{ρP(ℓ), ρQ(ℓ)}, O(1),
• Minkowski sum: ρX⊕Y(ℓ) = ρX (ℓ) + ρY(ℓ), O(1).
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Support Functions (Le Guernic, Girard,’09)[9]

X0

Ω̂0

Xδ

Ω̂1

X2δ

Ω̂2
X0

Ω̂0

Xδ

Ω̂1

X2δ

Ω̂2

support functions: lazy approximation on demand

polyhedra ellipsoids zonotopes support f.
operation m constr. k gen. n × n matrix k generators —

convex hull exp 2k approx approx O(1)
Minkowski sum exp k2 approx 2k O(1)
linear map m / exp k O(n3) k O(n2)

intersection 2m exp approx approx opt. / approx
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68

Example: Switched Oscillator

Ɣ Switched oscillator
– 2 continuous variables
– 4 discrete states
– similar to many circuits

(Buck converters,…)

Ɣ plus linear filter
– m continuous variables
– dampens output signal

Ɣ affine dynamics
– total 2 + m continuous variables

49



28 

Example: Switched Oscillator 

●  Low number of directions sufficient? 
–  here: 6 state variables 

12 box constraints 
(axis directions) 

72 octagonal constraints 
(± xi ± xj) 
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Example: Switched Oscillator

Ɣ Scalability Measurements:
– fixpoint reached in O(nm2) time
– box constraints: O(n3) 

– octagonal constraints: O(n5) 

0.1
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Example: Controlled Helicopter

Ɣ 28-dim model of a Westland Lynx helicopter
– 8-dim model of flight dynamics
– 20-dim continuous H' controller for disturbance rejection
– stiff, highly coupled dynamics

S. Skogestad and I. Postlethwaite, Multivariable Feedback Control: Analysis and Design. John Wiley & Sons, 2005.

Photo by Andrew P Clarke
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Example: Helicopter

Ɣ 28 state variables + clock

CAV’11: 1440 sets in 5.9s
1440 time steps

53
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Ɣ 28 state variables + clock

Example: Helicopter

HSCC’13: 32 sets in 15.2s (4.8s clustering)
2 -- 3300 time steps, median 360

convex in 29 
dimensions!
convex in 29 
dimensions!

54
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Example: Chaotic Circuit

Ɣ piecewise linear Rössler-like circuit
Pisarchik, Jaimes-Reátegui. ICCSDS’05

Ɣ added nondet. disturbances
Ɣ 3 variables, hard!

55



Nonlinear Dynamics – Polynomial Approximations

Bernstein polynomials for polynomial f(x)

• polyhedral approximation of successors8

Taylor models

• polynomial approximations of Taylor expansion
• represent sets with polynomials
• Flow* verification tool[11]

8 T. Dang and R. Testylier, “Reachability analysis for polynomial dynamical systems using the
bernstein expansion,” Reliable Computing, vol. 17, no. 2, pp. 128–152, 2012. 56
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Simulation Relations9

State-Transition System T = (S,→, s0),

• set of states S,
• transition relation s → s′,
• initial state s0 ∈ S.

Simulation Relation ⪯ ⊆ S1 × S2 :
s1 ⪯ s2 if s1 →1 s′1 ⇒ s2 →2 s′2 with s′1 ⪯ s′2.

T2 simulates T1 if s0
1 ⪯ s0

2.

9 R. Milner, “An algebraic definition of simulation between programs,” in Proc. of the 2nd Int.
Joint Conference on Artificial Intelligence. London, UK, September 1971, D. C. Cooper,
Ed., William Kaufmann, British Computer Society, 1971, pp. 481–489. 58



Simulation Relations

Simulation relations preserve safety properties:

Given s0
1 ⪯ s0

2, bad states B1, let the abstraction of B1

α⪯(B1) = {s2 ∈ S2 | ∃b1 ∈ B1 : b1 ⪯ s2},

If α⪯(B1) is unreachable in T2, then B1 is unreachable in T1.

59



Simulation Relations for Hybrid Automata

State-transition semantics JHK = (S,→, s0),

• set of states S = Loc × RX,
• transition relation s → s′:

• s δ−→ s′ : s′ reachable through elapse of δ time
• s α−→ s′: s′ reachable through transition α

• initial state s0 ∈ S.

H2 simulates H1: JH2K simulates JH1K
60
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Phase-Portait Approximation & Hybridization10

H1 and H2 identical except in each location the flow

H1 : ẋ ∈ f1(x) H2 : ẋ ∈ f2(x)

satisfies f1(x) ⊆ f2(x). Then H2 simulates H1 with

s1 ⪯ s2 ≡ s1 = s2

⇒ α⪯(B1) = B1.

10 T. A. Henzinger, P.-H. Ho, and H. Wong-Toi, “Algorithmic analysis of nonlinear hybrid
systems,” IEEE Transactions on Automatic Control, vol. 43, pp. 540–554, 1998. 62



Phase-Portait Approximation & Hybridization

Inv(ℓ)
ẋ ∈ f(x)

(a) H1

Inv(ℓ−)

ẋ ∈ f(x)
Inv(ℓ+)
ẋ ∈ f(x)

(b) H2

H2 simulates H1 if jumps unobservable and

Inv(ℓ) ⊆ Inv(ℓ−) ∪ Inv(ℓ+)

⇒ α⪯(B1) = B1|ℓ→ℓ− ∪ B1|ℓ→ℓ+.
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Approximating Nonlinear Dynamics

approximate nonlinear dynamics

ẋ ∈ f(x)

with piecewise constant dynamics ẋ ∈ Q

Q = { f(x) | x ∈ Inv(ℓ) }

splitting invariant reduces approximation error

64



Example: 2-dim. Tunnel Diode Oscillator11
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tiny invariants for high precision, not scalable

11 G. Frehse, B. H. Krogh, R. A. Rutenbar, and O. Maler, “Time domain verification of
oscillator circuit properties,” in FAC’05, ser. ENTCS, vol. 153, 2006, pp. 9–22. 65



Approximating Nonlinear Dynamics

approximate nonlinear dynamics

ẋ ∈ f(x)

with piecewise affine dynamics ẋ = Ax+ b+ u,u ∈ U

linearization:

aij =
∂fi
∂xj

(x0), b = f(x0)− Ax0.

approximation error:

U = { f(x)− (Ax+ b) | x ∈ Inv(ℓ) } .

66



Example: Van der Pol Oscillator12

ẋ = y
ẏ = y(1 − x2)− x

hybridization with partition of size 0.05

partitioning doesn’t scale well ⇒ use sliding window

12 E. Asarin, T. Dang, and A. Girard, “Hybridization methods for the analysis of nonlinear
systems,” Acta Inf., vol. 43, no. 7, pp. 451–476, 2007. 67
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Simulation Relations

matching identical traces:

s1 ⪯ s2 only if p(s1) = p(s2)

⇒ T2 may be much simpler than T1

bisimilar if s1 ⪯ s2 and s2 ⪯T s1 are simulation relations.

identifying bisimilar states in a system
⇒ accelerate analysis through on-the-fly minimization
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Simulation Relations for Continuous Systems

observed trace of x(t):

p(x(t)) = p(x0) +
∂p(x0)
∂x

ẋ(0)
1! t + ∂2p(x0)

∂x2
ẋ(0)2

2! t2 + ∂p(x0)
∂x

ẍ(0)
2! t2 + · · ·

contains state information, since

x(t) = x(0) + ẋ(0)
1! t + ẍ(0)

2! t2 + · · ·

identical traces ; equivalent dynamics

except in particular cases.13

13 A. van der Schaft, “Equivalence of dynamical systems by bisimulation,” IEEE transactions
on automatic control, vol. 49, no. 12, pp. 2160–2172, 2004. 70



Approximate Simulation (Girard, Julius, Pappas ’08)[17]

matching ε-close observable behavior:

x1 ⪯ε x2 only if ∥p(x1)− p(x2)∥ ≤ ε

⇒ traces from x1 and x2 never more than ε apart
(also in the future)

How close do traces need to be initially?
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Approximate Simulation

possible choice:

x1 ⪯ε x2 ≡ ∥p(x1)− p(x2)∥ ≤ ε

applicable if contractive:

d
dt∥p(x1)− p(x2)∥ ≤ 0.

better: find upper bound V(x1, x2) that is contractive
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Simulation Functions

a simulation function V : Rn × Rn → R≥0 satisfies

V(x1, x2) ≥ ∥p(x1)− p(x2)∥

d
dtV(x1, x2) ≤ 0

simulation relation: x1 ⪯ε x2 ≡ V(x1, x2) ≤ ε
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Simulation Functions

with dynamics ẋ1 = f1(x1), ẋ2 = f2(x2),

d
dtV(x1, x2) =

∂V
∂x1

f1(x1) +
∂V
∂x2

f2(x2)

computing V(x1, x2) for

• linear dynamics: linear matrix inequalities,
• polynomial dynamics: sums of squares program
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Approximate Simulation for Hybrid Automata[17]

Consider hybrid automata H1 and H2 with

• identical locations and transitions,
• V(x1, x2) a simulation function in all locations,
• only identity jumps (for simplicity).

Then H2 ε-simulates H1 if

• ε ≥ maxx1∈Init1(ℓ) minx2∈Init2(ℓ) V(x1, x2),
• Inv2(ℓ) ⊇ α⪯ε

(
Inv1(ℓ)

)
,

• G2 ⊇ α⪯ε (G1).

General case: Vℓ(x1, x2) location dependent
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Example: Patrolling Robot[17]

(a) H1: piecewise affine dynamics,
6 variables

(b) H2: pw. constant dynamics,
2 variables, H1 ⪯0.4 H2

reachable states much easier to compute for H2
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Approximate Simulation

Extensions:14

• bisimilar time- and state discretization,
• bounded- and unbounded safety verification,
• controller synthesis

14 A. Girard and G. J. Pappas, “Approximate bisimulation: A bridge between computer
science and control theory,” European Journal of Control, vol. 17, no. 5, pp. 568–578,
2011. 77
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Signal Temporal Logic (STL) (Maler, Nickovic, ’04)[19]

Signal: xi : R≥0 → R ∪ {⊤,⊥}

Trace: w = {x1, . . . , xN}

STL Syntax: variable xi, time interval I, property φ,

φ := true | xi ≥ 0 | ¬φ | φ ∧ φ | φ UI φ,

can express boolean and temporal operators (eventually,
globally, etc.) with bounded and unbounded time.
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Signal Temporal Logic (STL)

Syntax: φ := true | xi ≥ 0 | ¬φ | φ ∧ φ | φUIφ.

Boolean Semantics:

w, t |= true
w, t |= xi ≥ 0 iff xi(t) ≥ 0
w, t |= ¬φ iff w, t ̸|= φ

w, t |= φ ∧ ψ iff w, t |= φ and w, t |= ψ

w, t |= φ UI ψ iff ∃t′ ∈ t + I : w, t′ |= ψ∧
∀t′′ ∈ [t, t′] : w, t′′ |= φ
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STL – Quantitative Semantics15

Syntax: φ := true | xi ≥ 0 | ¬φ | φ ∧ φ | φUIφ.

Quantitative Semantics: robustness estimation

ρ(true,w, t) = ⊤
ρ(xi ≥ 0,w, t) = xi(t)
ρ(¬φ,w, t) = −ρ(φ,w, t)
ρ(φ ∧ ψ,w, t) = min {ρ(φ,w, t), ρ(ψ,w, t)}
ρ(φ UI ψ,w, t) = supt′∈t+I min

{
ρ(ψ,w, t′),

inft′′∈[t,t′] ρ(ϕ,w, t′′)
}

15 G. E. Fainekos and G. J. Pappas, “Robustness of temporal logic specifications for
continuous-time signals,” Theor. Comp. Science, vol. 410, no. 42, pp. 4262–4291, 2009. 81



STL – Quantitative Semantics

sign of ρ(φ,w, t) determines satisfaction status of φ

magnitude of ρ(φ,w, t) determines robustness :

any trace w′ satisfies ϕ if

∥w − w′∥∞ < ρ(φ,w, t).
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STL – Quantitative Semantics

for piecewise linear w, ρ(φ,w, t) computable in time16

O
(
|φ| · dh(φ) · |w|

)
,

• |φ| : number of nodes in AST
• h(φ) : depth of AST
• d : constant
• |w| : number of breakpoints

16 A. Donzé, T. Ferrere, and O. Maler, “Efficient robust monitoring for stl,” in Computer Aided
Verification, Springer, 2013, pp. 264–279. 83
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Verification by Numerical Simulation

Asumptions:

• assume computed traces sufficiently accurate
• equivalent neighborhood of initial state identifiable

Principle:

• sample initial states
• decide property on traces
• extend result to equivalent sets of initial states

sampling of initial states limited to low dimensional sets
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Verification by Numerical Simulation

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−5

0

5

position x

ve
loc

ity
v

trace violates property x ≤ 0.9 with robustness 0.1
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Verification by Numerical Simulation

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−5

0

5

position x

ve
loc

ity
v

identify equivalent initial states and mark as decided
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Verification by Numerical Simulation

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
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position x
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repeat: compute traces, identify equivalent initial states
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Verification by Numerical Simulation

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−5

0

5

position x

ve
loc

ity
v

stop when desired coverage achieved
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Finding Equivalent Initial States

using bisimulation:

x1 ⪯ε x2 ⇒ ∥wx1 − wx2∥ ≤ ε

given robustness of wx1 , obtain neighborhood from V(x1, x2)

tool with related approach (discrepancy): C2E2 (S. Mitra)17

17 P. S. Duggirala, S. Mitra, M. Viswanathan, and M. Potok, “C2e2: A verification tool for
stateflow models,” in TACAS’15, Springer. 91



Finding Equivalent Initial States

using sensitivity:18

• with sensitivity information from ODE solver:
influence of variations of the initial state on variation of
robustness

• black-box capable
• extends to parameter synthesis

tool: Breach (A. Donzé)

18 A. Donzé and O. Maler, “Robust satisfaction of temporal logic over real-valued signals,” in
FORMATS’10, Springer, 2010. 92



Falsification19

search counter-example that falsifies the property

• use statistics or optimization to pick next initial state
• black-box capable
• no claim for confirming property
• suitable for path-planning

tool: S-TaLiRo (G. Fainekos)

19 S. Sankaranarayanan and G. Fainekos, “Falsification of temporal properties of hybrid
systems using the cross-entropy method,” in HSCC’12. 93
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Conclusions

• Hybrid automata are challenging for model checking.
• Set-based reachability is exhaustive, sufficient for

safety and bounded liveness.
• costly, scalable for piecewise affine dynamics

• Abstraction lifts reachability to more complex systems
• progress with approximate simulation relations

• Verification by numerical simulation extends
properties from traces to sets of states

• sampling of initial states limited to low dimensional sets
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