Model Checking of Hybrid Systems

Goran Frehse

AVACS Autumn School, October 1, 2015

Univ. Grenoble Alpes – Verimag, 2 avenue de Vignate, Centre Equation, 38610 Gières, France, frehse@imag.fr Hybrid Automata

Set-Based Reachability

Abstraction-Based Model Checking

Verification by Numerical Simulation

Conclusions

Hybrid Automata

Example

Definition and Semantics

Set-Based Reachability

Abstraction-Based Model Checking

Verification by Numerical Simulation

Conclusions

Example: Ball on String

• dynamics in *freefall* when $x \ge x_r$, with mass m,

$$m\ddot{x} = F_g = -mg.$$

• dynamics in *extension* when $x \le x_r$, with spring constant k, damping factor d,

$$m\ddot{x} = F_g + F_s = -mg + kx_r - kx - d\dot{x}.$$

• transition when $x = x_r + L$, collision factor $c \in [0, 1]$,

$$\dot{X}' = -C\dot{X}.$$

Hybrid Automaton Model

auxiliary variable $v = \dot{x}$, so $\dot{v} = \ddot{x}$.

¹ G. Frehse, C. L. Guernic, A. Donzé, R. Ray, O. Lebeltel, R. Ripado, A. Girard, T. Dang, and O. Maler, "Spaceex: Scalable verification of hybrid systems," in *CAV'11*, ser. LNCS, Springer, 2011.

Behavior

Hybrid Automata

Example

Definition and Semantics

Set-Based Reachability

Abstraction-Based Model Checking

Verification by Numerical Simulation

Conclusions

Hybrid Automata (Alur, Henzinger, '95)[2][3]

- locations Loc = { ℓ_1, \ldots, ℓ_m } and variables $X = \{x_1, \ldots, x_n\}$ define the state space Loc $\times \mathbb{R}^X$,
- transitions Edg ⊆ Loc × Lab × Loc define location changes with synchronization labels Lab,
- invariant or staying condition $Inv \subseteq Loc \times \mathbb{R}^{X}$,
- flow relation Flow, where $Flow(\ell) \subseteq \mathbb{R}^{\dot{\chi}} \times \mathbb{R}^{\chi}$, e.g.,

$$\dot{\mathbf{x}} = f(\mathbf{x});$$

• jump relation Jump, where Jump $(e) \subseteq \mathbb{R}^{X} \times \mathbb{R}^{X'}$, e.g.,

 $\mathsf{Jump}(e) = \{(\mathbf{x}, \mathbf{x}') \mid \mathbf{x} \in \mathcal{G} \land \mathbf{x}' = r(\mathbf{x})\},\$

• initial states lnit \subseteq lnv.

$$(\ell_0, \mathbf{x}_0) \xrightarrow{\delta_0, \xi_0} (\ell_0, \xi_0(\delta_0)) \xrightarrow{\alpha_0} (\ell_1, \mathbf{x}_1) \xrightarrow{\delta_1, \xi_1} (\ell_1, \xi_1(\delta_1)) \dots$$

with $(\ell_0, \mathbf{x}_0) \in \text{Init}, \alpha_i \in \text{Lab} \cup \{\tau\}$, and for $i = 0, 1, \ldots$:

- 1. Trajectories: $(\dot{\xi}(t), \xi(t)) \in \text{Flow}(\ell) \text{ and } \xi_i(t) \in \text{Inv}(\ell_i)$ for all $t \in [0, \delta_i]$.
- 2. Jumps: $(\xi_i(\delta_i), \mathbf{x}_{i+1}) \in \text{Jump}(e_i),$ $e_i = (\ell_i, \alpha_i, \ell_{i+1}) \in \text{Edg, and } \mathbf{x}_{i+1} \in \text{Inv}(\ell_{i+1}).$

A state (ℓ, \mathbf{x}) is **reachable** if there exists a run with $(\ell_i, \mathbf{x}_i) = (\ell, \mathbf{x})$ for some *i*.

Example: Ball on String

Hybrid Automata

Set-Based Reachability

Piecewise Constant Dynamics

Piecewise Affine Dynamics

Set Representations

Abstraction-Based Model Checking

Verification by Numerical Simulation

Conclusions

Extending numerical simulation from numbers to sets

- account for nondeterminism
- exhaustive
- infinite time horizon

Downsides:

- only approximate for complex dynamics
- generally not scalable in # of variables
- trade-off between runtime and accuracy

One-step successors by time elapse from set of states S,

$$\mathsf{Post}_{C}(S) = \{(\ell, \xi(\delta)) \mid \exists (\ell, x) \in S : (\ell, \mathbf{x}) \xrightarrow{\delta, \xi} (\ell, \xi(\delta)) \}.$$

One-step successors by jump from set of states S,

$$\mathsf{Post}_{\mathcal{D}}(S) = \{ (\ell', \mathbf{x}') \mid \exists (\ell', \mathbf{x}') \in S, \exists \alpha \in \mathsf{Lab} \cup \{\tau\} : \\ (\ell, \mathbf{x}) \xrightarrow{\alpha} (\ell', \mathbf{x}') \}.$$

Compute sequence

$$R_0 = \text{Post}_C(\text{Init}),$$

$$R_{i+1} = R_i \cup \text{Post}_C(\text{Post}_D(R_i)).$$

If $R_{i+1} = R_i$, then R_i = reachable states.

- may not terminate if states unbounded (counter)
- problem undecidable in general²

² T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya, "What's decidable about hybrid automata?" *Journal of Computer and System Sciences*, vol. 57, pp. 94–124, 1998.

Ball on String: Reachable States

(clip from SpaceEx output)

- initial states and invariants given by conjunctions of linear constraints,
- flows given by conjunctions of linear constraints over the derivatives \dot{X} , and
- jumps given by linear constraints over $X \cup X'$, where X' denote the variables after the jump.

One-step successors of PCDA can be computed exactly.

H-polyhedron (constraint form)

$$\mathcal{P} = \Big\{ \mathbf{x} \Big| \bigwedge_{i=1}^{m} \mathbf{a}_{i}^{\mathsf{T}} \mathbf{x} \leq b_{i} \Big\},\$$

with facet normals $\mathbf{a}_i \in \mathbb{R}^n$ and inhomogeneous coefficients $b_i \in \mathbb{R}$.

vector-matrix notation:

$$\mathcal{P} = \left\{ \mathbf{x} \mid A\mathbf{x} \leq \mathbf{b} \right\}, \text{ with } A = \begin{pmatrix} \mathbf{a}_1^{\top} \\ \vdots \\ \mathbf{a}_m^{\top} \end{pmatrix}, \mathbf{b} = \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix}.$$

Geometric Operations

The convex hull chull $(\mathcal{Q}) = \left\{ \sum_{\mathbf{q}_i \in \mathcal{Q}} \lambda_i \cdot \mathbf{q}_i \mid \lambda_i \ge 0, \sum_i \lambda_i = 1 \right\},$ The cone of \mathcal{Q} is $pos(\mathcal{Q}) = \{\mathbf{q} \cdot t \mid \mathbf{q} \in \mathcal{Q}, t \ge 0\}.$ The Minkowski sum is $\mathcal{P} \oplus \mathcal{Q} = \{\mathbf{p} + \mathbf{q} \mid \mathbf{p} \in \mathcal{P}, \mathbf{q} \in \mathcal{Q}\}.$ \mathcal{V} -polyhedron (generator form)

$$\mathcal{P} = (V, R) = \operatorname{chull}(V) \oplus \operatorname{pos}(\operatorname{chull}(R)).$$

with vertices $V \subseteq \mathbb{R}^n$ and rays $R \subseteq \mathbb{R}^n$

conversion between \mathcal{H} - and \mathcal{V} -polyhedra is expensive

cube: 2n constraints, 2ⁿ vertices

cross-polytope (diamond): 2n vertices, 2n constraints

For PCDA, it suffices to consider straight-line trajectories:

Lemma (Constant Derivatives³)

There is a trajectory $\xi(t)$ from $\mathbf{x} = \xi(0)$ to $\mathbf{x}' = \xi(\delta)$, $\delta > 0$, iff $\eta(t) = \mathbf{x} + \mathbf{q}t$ with $\mathbf{q} = (\mathbf{x}' - \mathbf{x})/\delta$ is a trajectory from \mathbf{x} to \mathbf{x}' .

³ P.-H. Ho, "Automatic analysis of hybrid systems," Technical Report CSD-TR95-1536, PhD thesis, Cornell University, Aug. 1995.

Given polyhedra $\mathcal{P} = \{\mathbf{x} \mid A\mathbf{x} \leq \mathbf{b}\}, \ \mathcal{Q} = \{\mathbf{q} \mid \overline{A}\mathbf{q} \leq \overline{\mathbf{b}}\}$ Time successors (without invariant):

$$\mathcal{P} \nearrow \mathcal{Q} = \{ \mathbf{x}' \mid \mathbf{x} \in \mathcal{P}, \mathbf{q} \in \mathcal{Q}, t \in \mathbb{R}^{\geq 0}, \mathbf{x}' = \mathbf{x} + \mathbf{q}t \}.$$

Eliminating $\mathbf{q} = \frac{\mathbf{x}' - \mathbf{x}}{t}$ for t > 0 and multiplying with t:

$$\mathcal{P} \nearrow \mathcal{Q} = \Big\{ \mathbf{x}' \ \Big| \ A\mathbf{x} \le \mathbf{b} \ \land \ \bar{A}(\mathbf{x}' - \mathbf{x}) \le \bar{\mathbf{b}} \cdot t \ \land \ t \ge 0 \Big\}.$$

Quantifier elimination of t squares the number of constraints.

Time Elapse with Polyhedra – Geometric Version

Intersect with invariant:

 $\text{post}_{\mathcal{C}}(\ell \times \mathcal{P}) = \ell \times (\mathcal{P} \nearrow \text{Flow}(\ell)) \cap \text{Inv}(\ell).$

Edge $e = (\ell, \alpha, \ell')$ with guard $\mathbf{x} \in \mathcal{G}$ and nondeterministic assignment $\mathbf{x}' = C\mathbf{x} + \mathbf{w}, \mathbf{w} \in \mathcal{W}$,

 $\text{post}_{\mathcal{D}}(\ell \times P) = \ell' \times (C(\mathcal{P} \cap \mathcal{G}) \oplus \mathcal{W}) \cap \text{Inv}(\ell').$

If **linear map** *C* singular, constraints require quantifier elimination, otherwise

$$C\mathcal{P} = \{\mathbf{x} \mid AC^{-1}\mathbf{x} \le b\}$$

	polyhedra					
operation	<i>m</i> constraints	k generators				
cone	m^2	k				
Minkowski sum	exp	k^2				
linear map	m / <mark>exp</mark>	k				
intersection	2 <i>m</i>	exp				

• chaos

- even with 1 variable, 1 location, 1 transition (tent map)
- observed in actual production systems [Schmitz, 2002]

brewery and chaotic throughput [Schmitz, 2002]

Example: Multi-Product Batch Plant

VERIMAG

Example: Multi-Product Batch Plant

• Cascade mixing process

- 3 educts via 3 reactors \Rightarrow 2 products

Verification Goals

- Invariants
 - overflow
 - product tanks never empty
- Filling sequence
- Design of verified controller

VERIMAG

Verification with PHAVer

Controller

Controlled Plant

Controller + Plant

- 266 locations, 823 transitions (~150 reachable)
- 8 continuous variables

Reachability over infinite time

- 120s-1243s, 260-600MB
- computation cost increases with nondeterminism (intervals for throughputs, initial states)

VERIMAG

Verification with PHAVer

	Time [s]	Mem. [MB]	$Depth^a$	Checks ^b	Automaton		Reachable Set	
Instance					Loc.	Trans.	Loc.	Poly.
BP8.1	120	267	173	279	266	823	130	279
BP8.2	139	267	173	422	266	823	131	450
BP8.3	845	622	302	2669	266	823	143	2737
BP8.4	1243	622	1071	4727	266	823	147	4772

 * on Xeon 3.20 GHz, 4GB RAM running Linux; a lower bound on depth in breadth-first search; b number of applications of post-operator

Hybrid Automata

Set-Based Reachability

Piecewise Constant Dynamics

Piecewise Affine Dynamics

Set Representations

Abstraction-Based Model Checking

Verification by Numerical Simulation

Conclusions

Hybrid automata with piecewise affine dynamics (PWA)

- initial states and invariants are polyhedra,
- flows are affine ODEs

$$\dot{\mathbf{x}} = A\mathbf{x} + B\mathbf{u}, \qquad \mathbf{u} \in \mathcal{U},$$

• jumps have a guard set and assignments

$$\mathbf{x}' = C\mathbf{x} + \mathbf{w}, \qquad \mathbf{w} \in \mathcal{W}.$$

$$\dot{\mathbf{x}} = A\mathbf{x} + B\mathbf{u}, \qquad \mathbf{u} \in \mathcal{U},$$

trajectory $\xi(t)$ from $\xi(0) = \mathbf{x}_0$ for given input signal $\zeta(t) \in \mathcal{U}$:

$$\xi_{\mathbf{x}_{0},\zeta}(t) = e^{At}\mathbf{x}_{0} + \int_{0}^{t} e^{A(t-s)}B\zeta(s)ds.$$

reachable states from set \mathcal{X}_0 for any input signal:

$$\mathcal{X}_t = e^{\mathcal{A}t} \mathcal{X}_0 \oplus \mathcal{Y}_t$$

$$\mathcal{Y}_t = \int_0^t e^{As} \mathcal{U} ds = e^{At} \mathcal{X}_0 \oplus \lim_{\delta \to 0} \bigoplus_{k=0}^{\lfloor t/\delta \rfloor} e^{A\delta k} \delta \mathcal{U}.$$

Computing a Convex Cover

Compute $\Omega_0, \Omega_1, \ldots$ such that

$$\bigcup_{0\leq t\leq T} \mathcal{X}_t \subseteq \Omega_0 \cup \Omega_1 \cup \ldots$$

Time Discretization

Semi-group property: $(\mathcal{X}_{k\delta})_{\delta} = \mathcal{X}_{(k+1)\delta}$ Time discretization: $\mathcal{X}_{(k+1)\delta} = e^{A\delta}\mathcal{X}_{k\delta} \oplus \mathcal{Y}_{\delta}$.

Given initial approximations Ω_0 and Ψ_δ such that

$$\bigcup_{\leq t \leq \delta} \mathcal{X}_t \subseteq \Omega_0, \qquad \mathcal{Y}_\delta \subseteq \Psi_\delta,$$

 \mathcal{X}_t is covered by the sequence

$$\Omega_{k+1}=e^{A\delta}\Omega_k\oplus\Psi_{\delta}.$$

Initial Approximations

(a) convex hull and pushing facets

(b) convex hull and bloating
Bloating based on norms:4

$$\begin{split} \Omega_{0} &= \operatorname{chull}(\mathcal{X}_{0} \cup e^{\mathcal{A}\delta}\mathcal{X}_{0}) \oplus (\alpha_{\delta} + \beta_{\delta})\mathcal{B} \\ \Psi_{\delta} &= \beta_{\delta}\mathcal{B}, \\ \alpha_{\delta} &= \mu(\mathcal{X}_{0}) \cdot (e^{||\mathcal{A}||\delta} - 1 - ||\mathcal{A}||\delta), \\ \beta_{\delta} &= \frac{1}{||\mathcal{A}||} \mu(\mathcal{B}\mathcal{U}) \cdot (e^{||\mathcal{A}||\delta} - 1), \end{split}$$

with radius $\mu(\mathcal{X}) = \max_{x \in \mathcal{X}} ||x||$ and unit ball \mathcal{B} .

,

⁴ A. Girard, "Reachability of uncertain linear systems using zonotopes," in *HSCC*, 2005, pp. 291–305.

Initial Approximations – Forward Bloating

Forward bloating is tight on \mathcal{X}_0 and bloated on \mathcal{X}_{δ} .

Improvements:

- intersect forward bloating with backward bloating
- bloat based on interpolation error (shown before)

Wrapping Effect

(a) with wrapping effect

(b) using a wrapping-free algorithm

avoid increasing complexity through approximation

$$\hat{\Omega}_{k+1} = \operatorname{Appr}(e^{A\delta}\hat{\Omega}_k \oplus \Psi_{\delta}).$$

wrapping effect: error accumulation

Solution: Split sequence⁵

$$\begin{aligned} \hat{\Psi}_{k+1} &= \operatorname{Appr}(e^{Ak\delta}\Psi_{\delta}) \oplus \hat{\Psi}_{k}, & \text{with } \hat{\Psi}_{0} = \{0\}, \\ \hat{\Omega}_{k} &= \operatorname{Appr}(e^{Ak\delta}\Omega_{0}) \oplus \hat{\Psi}_{k}. \end{aligned}$$

satisfies $\hat{\Omega}_k = \operatorname{Appr}(\Omega_k)$ (wrapping-free) if

 $\operatorname{Appr}(\mathcal{P}\oplus\mathcal{Q})=\operatorname{Appr}(\mathcal{P})\oplus\operatorname{Appr}(\mathcal{Q}),$

e.g., bounding box.

⁵ A. Girard, C. L. Guernic, and O. Maler, "Efficient computation of reachable sets of linear time-invariant systems with inputs," in *HSCC*, 2006, pp. 257–271.

Hybrid Automata

Set-Based Reachability

Piecewise Constant Dynamics

Piecewise Affine Dynamics

Set Representations

Abstraction-Based Model Checking

Verification by Numerical Simulation

Conclusions

Polyhedra

	polyhedra		
operation	<i>m</i> constr.	<i>k</i> gen.	
convex hull Minkowski sum linear map intersection	exp exp m / exp 2m	2k k ² k exp	

Ellipsoids⁶

aparation	polyhe m constr	ellipsoids	
operation	m constr.	k gen.	$n \times n$ matrix
convex hull	exp	2k	approx
Minkowski sum	exp	k ²	approx
linear map	m / exp	k	$\mathcal{O}(n^3)$
intersection	2m	exp	

⁶ A. B. Kurzhanski and P. Varaiya, *Dynamics and Control of Trajectory Tubes*. Springer, 2014.

Zonotopes

Zonotope with center $\mathbf{c} \in \mathbb{R}^n$ and generators $\mathbf{v}_1, \ldots, \mathbf{v}_k \in \mathbb{R}^n$

$$\mathcal{P} = \bigg\{ \mathbf{c} + \sum_{i=1}^{k} \alpha_i \mathbf{v}_i \ \bigg| \ \alpha_i \in [-1, 1] \bigg\}.$$

linear map: map center and generators Minkowski sum: add centers, take union of generators

Zonotopes⁷

operation	polyhedra		ellipsoids	zonotopes
	<i>m</i> constr. <i>k</i> gen.		<i>n × n</i> matrix	<i>k</i> generators
convex hull	exp	2k	approx	approx
Minkowski sum	exp	k ²	approx	2k
linear map	m / exp	k	$\mathcal{O}(n^3)$	k
intersection	2m	exp	approx	approx

⁷ A. Girard, "Reachability of uncertain linear systems using zonotopes," in *HSCC*, 2005, pp. 291–305.

Support Functions

(a) support function in direction *d*

(b) outer approximation

support function = linear optimization (efficient!)

$$\rho_{\mathcal{P}}(\mathbf{d}) = \max\{\mathbf{d}^{\mathsf{T}}\mathbf{x} \mid \mathbf{x} \in \mathcal{P}\}.$$

computed values define polyhedral outer approximation

$$\left\lceil \mathcal{P} \right\rceil_{\mathcal{D}} = \bigcap_{\mathbf{d} \in \mathcal{D}} \left\{ \mathbf{d}^{\mathsf{T}} X \leq \rho_{\mathcal{P}}(\mathbf{d}) \right\}.$$

Support Functions

(a) support function in direction d

(b) outer approximation

- linear map: $\rho_{M\mathcal{X}}(\ell) = \rho_{\mathcal{X}}(M^{\mathsf{T}}\ell), \mathcal{O}(mn),$
- convex hull: $\rho_{\text{chull}(\mathcal{P}\cup\mathcal{Q})}(\ell) = \max\{\rho_{\mathcal{P}}(\ell), \rho_{\mathcal{Q}}(\ell)\}, \mathcal{O}(1),$
- Minkowski sum: $\rho_{\mathcal{X}\oplus\mathcal{Y}}(\ell) = \rho_{\mathcal{X}}(\ell) + \rho_{\mathcal{Y}}(\ell)$, $\mathcal{O}(1)$.

Support Functions (Le Guernic, Girard,'09)[9]

support functions: lazy approximation on demand

	polyhe	edra	ellipsoids	zonotopes	support f.
operation	<i>m</i> constr.	<i>k</i> gen.	$n \times n$ matrix	k generators	—
convex hull Minkowski sum linear map intersection	exp exp m / exp 2m	2k k ² k exp	approx approx $\mathcal{O}(n^3)$ approx	approx 2k k approx	$\mathcal{O}(1)$ $\mathcal{O}(1)$ $\mathcal{O}(n^2)$ opt. / approx

Example: Switched Oscillator

Switched oscillator

- 2 continuous variables
- 4 discrete states
- similar to many circuits (Buck converters,...)

• plus linear filter

- *m* continuous variables
- dampens output signal

affine dynamics

- total 2 + m continuous variables

VERIMAG

Example: Switched Oscillator

• Low number of directions sufficient?

- here: 6 state variables

Example: Switched Oscillator

• Scalability Measurements:

- fixpoint reached in $O(nm^2)$ time
- box constraints: $O(n^3)$

- octagonal constraints: $O(n^5)$

VERIMAG

Example: Controlled Helicopter

• 28-dim model of a Westland Lynx helicopter

- 8-dim model of flight dynamics
- 20-dim continuous H∞ controller for disturbance rejection
- stiff, highly coupled dynamics

VERIMAG

Example: Helicopter

• 28 state variables + clock

CAV'11: 1440 sets in 5.9s

1440 time steps

Example: Helicopter

• 28 state variables + clock

HSCC'13: 32 sets in 15.2s (4.8s clustering) 2 -- 3300 time steps, median 360

Example: Chaotic Circuit

- piecewise linear Rössler-like circuit Pisarchik, Jaimes-Reátegui. ICCSDS'05
- added nondet. disturbances

Bernstein polynomials for polynomial *f*(**x**)

• polyhedral approximation of successors⁸

Taylor models

- polynomial approximations of Taylor expansion
- represent sets with polynomials
- Flow* verification tool^[11]

⁸ T. Dang and R. Testylier, "Reachability analysis for polynomial dynamical systems using the bernstein expansion," *Reliable Computing*, vol. 17, no. 2, pp. 128–152, 2012.

Hybrid Automata

Set-Based Reachability

Abstraction-Based Model Checking Simulation Relations Hybridization Approximate Simulation Verification by Numerical Simulation

Conclusions

State-Transition System $T = (S, \rightarrow, S^{\circ})$,

- set of states S,
- transition relation $s \rightarrow s'$,
- initial state $s^0 \in S$.

Simulation Relation $\leq S_1 \times S_2$: $s_1 \leq s_2$ if $s_1 \rightarrow_1 s'_1 \Rightarrow s_2 \rightarrow_2 s'_2$ with $s'_1 \leq s'_2$.

 T_2 simulates T_1 if $s_1^0 \leq s_2^0$.

⁹ R. Milner, "An algebraic definition of simulation between programs," in *Proc. of the 2nd Int. Joint Conference on Artificial Intelligence. London, UK, September 1971*, D. C. Cooper, Ed., William Kaufmann, British Computer Society, 1971, pp. 481–489.

Simulation relations preserve safety properties:

Given $s_1^0 \preceq s_2^0$, bad states B_1 , let the abstraction of B_1 $\alpha_{\prec}(B_1) = \{s_2 \in S_2 \mid \exists b_1 \in B_1 : b_1 \preceq s_2\},\$

If $\alpha_{\preceq}(B_1)$ is unreachable in T_2 , then B_1 is unreachable in T_1 .

State-transition semantics $\llbracket H \rrbracket = (S, \rightarrow, S^0)$,

- set of states $S = Loc \times \mathbb{R}^X$,
- transition relation $s \rightarrow s'$:
 - $s \xrightarrow{\delta} s' : s'$ reachable through elapse of δ time
 - $s \xrightarrow{\alpha} s'$: s' reachable through transition α
- initial state $s^0 \in S$.

 H_2 simulates H_1 : $\llbracket H_2 \rrbracket$ simulates $\llbracket H_1 \rrbracket$

Hybrid Automata

Set-Based Reachability

Abstraction-Based Model Checking

Simulation Relations

Hybridization

Approximate Simulation

Verification by Numerical Simulation

Conclusions

 H_1 and H_2 identical except in each location the flow

 $H_1: \dot{\mathbf{x}} \in f_1(\mathbf{x}) \qquad \qquad H_2: \dot{\mathbf{x}} \in f_2(\mathbf{x})$

satisfies $f_1(\mathbf{x}) \subseteq f_2(\mathbf{x})$. Then H_2 simulates H_1 with

 $S_1 \preceq S_2 \equiv S_1 = S_2$

 $\Rightarrow \alpha_{\preceq}(B_1) = B_1.$

¹⁰ T. A. Henzinger, P.-H. Ho, and H. Wong-Toi, "Algorithmic analysis of nonlinear hybrid systems," *IEEE Transactions on Automatic Control*, vol. 43, pp. 540–554, 1998.

Phase-Portait Approximation & Hybridization

 H_2 simulates H_1 if jumps unobservable and

 $\operatorname{Inv}(\ell) \subseteq \operatorname{Inv}(\ell^{-}) \cup \operatorname{Inv}(\ell^{+})$

 $\Rightarrow \alpha_{\preceq}(B_1) = B_1|_{\ell \to \ell^-} \cup B_1|_{\ell \to \ell^+}.$

approximate nonlinear dynamics

 $\dot{\mathbf{x}} \in f(\mathbf{x})$

with piecewise constant dynamics $\dot{\textbf{x}} \in \mathcal{Q}$

$$\mathcal{Q} = \{ f(\mathbf{x}) \mid \mathbf{x} \in \mathsf{Inv}(\ell) \}$$

splitting invariant reduces approximation error

Example: 2-dim. Tunnel Diode Oscillator¹¹

tiny invariants for high precision, not scalable

¹¹G. Frehse, B. H. Krogh, R. A. Rutenbar, and O. Maler, "Time domain verification of oscillator circuit properties," in *FAC'05*, ser. ENTCS, vol. 153, 2006, pp. 9–22.

Approximating Nonlinear Dynamics

approximate nonlinear dynamics

 $\dot{\mathbf{x}} \in f(\mathbf{x})$

with piecewise affine dynamics $\dot{\mathbf{x}} = A\mathbf{x} + \mathbf{b} + \mathbf{u}, \mathbf{u} \in \mathcal{U}$ linearization:

$$a_{ij} = \frac{\partial f_i}{\partial x_j}(\mathbf{x}_0), \quad \mathbf{b} = f(\mathbf{x}_0) - A\mathbf{x}_0.$$

approximation error:

$$\mathcal{U} = \{ f(\mathbf{x}) - (A\mathbf{x} + \mathbf{b}) \mid \mathbf{x} \in \mathsf{Inv}(\ell) \}.$$

Example: Van der Pol Oscillator¹²

hybridization with partition of size 0.05

partitioning doesn't scale well \Rightarrow use sliding window

¹² E. Asarin, T. Dang, and A. Girard, "Hybridization methods for the analysis of nonlinear systems," *Acta Inf.*, vol. 43, no. 7, pp. 451–476, 2007.

Hybrid Automata

Set-Based Reachability

Abstraction-Based Model Checking

Simulation Relations

Hybridization

Approximate Simulation

Verification by Numerical Simulation

Conclusions

matching identical traces:

$$s_1 \preceq s_2$$
 only if $p(s_1) = p(s_2)$

⇒ T_2 may be much simpler than T_1 **bisimilar** if $s_1 \preceq s_2$ and $s_2 \preceq^T s_1$ are simulation relations. identifying bisimilar states in a system

 \Rightarrow accelerate analysis through on-the-fly minimization

observed trace of x(t):

 $\rho(x(t)) = \rho(x_0) + \frac{\partial \rho(x_0)}{\partial x} \frac{\dot{x}(0)}{1!} t + \frac{\partial^2 \rho(x_0)}{\partial x^2} \frac{\dot{x}(0)^2}{2!} t^2 + \frac{\partial \rho(x_0)}{\partial x} \frac{\ddot{x}(0)}{2!} t^2 + \cdots$

contains state information, since

$$x(t) = x(0) + \frac{\dot{x}(0)}{1!}t + \frac{\ddot{x}(0)}{2!}t^2 + \cdots$$

identical traces ~> equivalent dynamics

except in particular cases.13

¹³A. van der Schaft, "Equivalence of dynamical systems by bisimulation," *IEEE transactions on automatic control*, vol. 49, no. 12, pp. 2160–2172, 2004.

matching ε -close observable behavior:

 $\mathbf{x}_1 \preceq_{\varepsilon} \mathbf{x}_2$ only if $\| p(\mathbf{x}_1) - p(\mathbf{x}_2) \| \le \varepsilon$

 \Rightarrow traces from \mathbf{x}_1 and \mathbf{x}_2 never more than ε apart (also in the future)

How close do traces need to be initially?

possible choice:

$$\mathbf{x}_1 \preceq_{\varepsilon} \mathbf{x}_2 \equiv \| p(\mathbf{x}_1) - p(\mathbf{x}_2) \| \le \varepsilon$$

applicable if **contractive**:

$$\frac{d}{dt}\|\boldsymbol{\rho}(\mathbf{x}_1)-\boldsymbol{\rho}(\mathbf{x}_2)\|\leq 0.$$

better: find upper bound $V(\mathbf{x}_1, \mathbf{x}_2)$ that is contractive
a simulation function $V : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^{\geq 0}$ satisfies

$$V(\mathbf{x}_1, \mathbf{x}_2) \ge \|p(\mathbf{x}_1) - p(\mathbf{x}_2)\|$$
$$\frac{d}{dt}V(\mathbf{x}_1, \mathbf{x}_2) \le 0$$

simulation relation: $\mathbf{x}_1 \preceq_{\varepsilon} \mathbf{x}_2 \equiv V(\mathbf{x}_1, \mathbf{x}_2) \leq \varepsilon$

with dynamics $\dot{\mathbf{x}}_1 = f_1(\mathbf{x}_1)$, $\dot{\mathbf{x}}_2 = f_2(\mathbf{x}_2)$,

$$\frac{d}{dt}V(\mathbf{x}_1,\mathbf{x}_2) = \frac{\partial V}{\partial \mathbf{x}_1}f_1(\mathbf{x}_1) + \frac{\partial V}{\partial \mathbf{x}_2}f_2(\mathbf{x}_2)$$

computing $V(\mathbf{x}_1, \mathbf{x}_2)$ for

- linear dynamics: linear matrix inequalities,
- polynomial dynamics: sums of squares program

Consider hybrid automata H_1 and H_2 with

- identical locations and transitions,
- $V(\mathbf{x}_1, \mathbf{x}_2)$ a simulation function in all locations,
- only identity jumps (for simplicity).

Then $H_2 \varepsilon$ -simulates H_1 if

- $\varepsilon \geq \max_{\mathbf{x}_1 \in \operatorname{Init}_1(\ell)} \min_{\mathbf{x}_2 \in \operatorname{Init}_2(\ell)} V(\mathbf{x}_1, \mathbf{x}_2),$
- $\operatorname{Inv}_2(\ell) \supseteq \alpha_{\preceq_{\varepsilon}}(\operatorname{Inv}_1(\ell)),$
- $\mathcal{G}_2 \supseteq \alpha_{\preceq_{\varepsilon}} (\mathcal{G}_1).$

General case: $V_{\ell}(\mathbf{x}_1, \mathbf{x}_2)$ location dependent

Example: Patrolling Robot^[17]

6 variables

(a) H_1 : piecewise affine dynamics, (b) H_2 : pw. constant dynamics, 2 variables, $H_1 \preceq_{0.4} H_2$

reachable states much easier to compute for H_2

Extensions:14

- bisimilar time- and state discretization,
- bounded- and unbounded safety verification,
- controller synthesis

¹⁴ A. Girard and G. J. Pappas, "Approximate bisimulation: A bridge between computer science and control theory," *European Journal of Control*, vol. 17, no. 5, pp. 568–578, 2011.

Hybrid Automata

- Set-Based Reachability
- Abstraction-Based Model Checking
- Verification by Numerical Simulation
 - Signal Temporal Logic
 - Principle
 - Variations
- Conclusions

Signal: $x_i : \mathbb{R}^{\geq 0} \to \mathbb{R} \cup \{\top, \bot\}$ Trace: $w = \{x_1, \dots, x_N\}$ STL Syntax: variable x_i , time interval *I*, property φ ,

$$\varphi := \operatorname{true} | X_i \ge 0 | \neg \varphi | \varphi \land \varphi | \varphi \operatorname{U}_I \varphi,$$

can express boolean and temporal operators (*eventually*, *globally*, etc.) with bounded and unbounded time.

Syntax:
$$\varphi := \text{true} \mid X_i \ge 0 \mid \neg \varphi \mid \varphi \land \varphi \mid \varphi \mathbf{U}_l \varphi.$$

Boolean Semantics:

$$\begin{array}{lll} w,t \models \text{true} \\ w,t \models x_i \ge 0 & \text{iff} \quad x_i(t) \ge 0 \\ w,t \models \neg \varphi & \text{iff} \quad w,t \not\models \varphi \\ w,t \models \varphi \land \psi & \text{iff} \quad w,t \models \varphi \text{ and } w,t \models \psi \\ w,t \models \varphi \cup_I \psi & \text{iff} \quad \exists t' \in t+I : w,t' \models \psi \land \\ \forall t'' \in [t,t'] : w,t'' \models \varphi \end{array}$$

Syntax:
$$\varphi := \text{true} \mid x_i \ge 0 \mid \neg \varphi \mid \varphi \land \varphi \mid \varphi U_l \varphi.$$

Quantitative Semantics: robustness estimation

$$\rho(\operatorname{true}, w, t) = \top$$

$$\rho(x_i \ge 0, w, t) = x_i(t)$$

$$\rho(\neg \varphi, w, t) = -\rho(\varphi, w, t)$$

$$\rho(\varphi \land \psi, w, t) = \min \{\rho(\varphi, w, t), \rho(\psi, w, t)\}$$

$$\rho(\varphi \sqcup_I \psi, w, t) = \sup_{t' \in t+I} \min \{\rho(\psi, w, t'), \min_{t'' \in [t, t']} \rho(\phi, w, t'')\}$$

¹⁵G. E. Fainekos and G. J. Pappas, "Robustness of temporal logic specifications for continuous-time signals," *Theor. Comp. Science*, vol. 410, no. 42, pp. 4262–4291, 2009.
 81

sign of $\rho(\varphi, w, t)$ determines satisfaction status of φ **magnitude** of $\rho(\varphi, w, t)$ determines **robustness** : any trace w' satisfies ϕ if

$$\|W - W'\|_{\infty} < \rho(\varphi, W, t).$$

for piecewise linear w, $\rho(\varphi, w, t)$ computable in time¹⁶

 $\mathcal{O}(|\varphi| \cdot d^{h(\varphi)} \cdot |w|),$

- $|\varphi|$: number of nodes in AST
- $h(\varphi)$: depth of AST
- d : constant
- |w| : number of breakpoints

¹⁶ A. Donzé, T. Ferrere, and O. Maler, "Efficient robust monitoring for stl," in *Computer Aided Verification*, Springer, 2013, pp. 264–279.

Hybrid Automata

- Set-Based Reachability
- Abstraction-Based Model Checking

Verification by Numerical Simulation

- Signal Temporal Logic
- Principle
- Variations
- Conclusions

Asumptions:

- assume computed traces sufficiently accurate
- equivalent neighborhood of initial state identifiable

Principle:

- sample initial states
- decide property on traces
- extend result to equivalent sets of initial states

sampling of initial states limited to low dimensional sets

trace violates property $x \le 0.9$ with robustness 0.1

identify equivalent initial states and mark as decided

repeat: compute traces, identify equivalent initial states

stop when desired coverage achieved

Hybrid Automata

Set-Based Reachability

Abstraction-Based Model Checking

Verification by Numerical Simulation

- Signal Temporal Logic
- Principle

Variations

Conclusions

using **bisimulation**:

$$\mathbf{X}_1 \preceq_{\varepsilon} \mathbf{X}_2 \; \Rightarrow \; \| w_{\mathbf{X}_1} - w_{\mathbf{X}_2} \| \le \varepsilon$$

given robustness of $w_{\mathbf{x}_1}$, obtain neighborhood from $V(\mathbf{x}_1, \mathbf{x}_2)$

tool with related approach (discrepancy): C2E2 (S. Mitra)¹⁷

¹⁷ P. S. Duggirala, S. Mitra, M. Viswanathan, and M. Potok, "C2e2: A verification tool for stateflow models," in *TACAS'15*, Springer.

using sensitivity:18

- with sensitivity information from ODE solver: influence of variations of the initial state on variation of robustness
- black-box capable
- extends to parameter synthesis

tool: Breach (A. Donzé)

¹⁸ A. Donzé and O. Maler, "Robust satisfaction of temporal logic over real-valued signals," in *FORMATS'10*, Springer, 2010.

search counter-example that falsifies the property

- use statistics or optimization to pick next initial state
- black-box capable
- no claim for confirming property
- suitable for path-planning

tool: S-TaLiRo (G. Fainekos)

¹⁹ S. Sankaranarayanan and G. Fainekos, "Falsification of temporal properties of hybrid systems using the cross-entropy method," in *HSCC'12*.

Hybrid Automata

Set-Based Reachability

Abstraction-Based Model Checking

Verification by Numerical Simulation

Conclusions

- Hybrid automata are challenging for model checking.
- Set-based reachability is exhaustive, sufficient for safety and bounded liveness.
 - costly, scalable for piecewise affine dynamics
- Abstraction lifts reachability to more complex systems
 - progress with approximate simulation relations
- Verification by numerical simulation extends properties from traces to sets of states
 - sampling of initial states limited to low dimensional sets

References

- R. Alur, C. Courcoubetis, N. Halbwachs, T. Henzinger, P.-H. Ho, X. Nicollin,
 A. Olivero, J. Sifakis, and S. Yovine, "The algorithmic analysis of hybrid systems," *Theoretical Computer Science*, vol. 138, pp. 3–34, 1995.
- [3] T. A. Henzinger, "The theory of hybrid automata.," in *LICS*, Los Alamitos: IEEE Computer Society, 1996, pp. 278–292.
- [9] C. Le Guernic and A. Girard, "Reachability analysis of linear systems using support functions," *Nonlinear Analysis: Hybrid Systems*, vol. 4, no. 2, pp. 250–262, 2010.
- [11] X. Chen, E. Ábrahám, and S. Sankaranarayanan, "Taylor model flowpipe construction for non-linear hybrid systems," in *RTSS*, IEEE Computer Society, 2012, pp. 183–192, ISBN: 978-1-4673-3098-5.
- [17] A. Girard, A. A. Julius, and G. J. Pappas, "Approximate simulation relations for hybrid systems," *Discrete Event Dynamic Systems*, vol. 18, no. 2, pp. 163–179, 2008.
- [19] O. Maler and D. Nickovic, "Monitoring temporal properties of continuous signals," in Formal Techniques, Modelling and Analysis of Timed and Fault-Tolerant Systems, Springer, 2004, pp. 152–166.