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Quantifier Elimination and Decision
Example (Tarski Algebra = real numbers with arithmetic and ordering)

REVYXIy(x® +xy+b>0Ax+ay? +b<0)——a<0Ab>0
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Quantifier Elimination and Decision
Example (Tarski Algebra = real numbers with arithmetic and ordering)

R | Vx3y(x? 24+ b<0)— OAb>0
FLX y(x*+xy+b>0Ax+ay +b< 2 a< >

-—

[ @

Formally: Given 1st-order theory ©, find algorithm with input ¢ and output ¢’
quantifier-free such that
Ok — ¢,
or prove that no such algorithm exists.
Important aspects: theoretical complexity, practical performance
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Quantifier Elimination and Decision
Example (Tarski Algebra = real numbers with arithmetic and ordering)

R = Vx3y(x® 24+b<0 0Ab>0
|=Lx y(x*+xy+b>0Ax+ay +b< 2<—>a< >

-—

1) 9’

Formally: Given 1st-order theory ©, find algorithm with input ¢ and output ¢’
quantifier-free such that
OF p— ¢,
or prove that no such algorithm exists.
Important aspects: theoretical complexity, practical performance

Important Special Cases

» all variables in @ are quantified ~» decision problem
» only existential quantifiers ~» satisfiability problem
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Quantifier Elimination-relevant Research Topics

Automated Reasoning
heuristics
learning

model-based construction

Symbolic Computation

algebraic complexity
computer algebra systems
exact arithmetic
Grobner bases
polynomial factorization
real algebraic numbers

subresultants Algebraic Model Theory

definable sets
elementary extensions
substructure completeness
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Applications

chemistry
engineering
geometry
life sciences
physics
planning
scientific computing
verification
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Definitions
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Syntax and Semantics

Language (= Signature): L= (0,1, +,—,-, <, <, £, >, 2)

Semantics: Everything is interpreted over RR.
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Syntax and Semantics

Language (= Signature): L= (0,1, +,—,-, <, <, £, >, 2)

Semantics: Everything is interpreted over R.

Important convention in algebraic model theory
There is always“=" which is formally not in the language.
Semantics of “="is Leibniz’s (second-order) definition of equality

x=y: < VYp(p(x) — p(y))

in contrast to its first-order theory.

For convenience, define L_ := Lu {=}.

l l I p I I max p]:mitl;k institut Definitions - 6/42



Syntax and Semantics

Language (= Signature): L= (0,1, +,—,-, <, <, £, >, 2)

Semantics: Everything is interpreted over R.

Important convention in algebraic model theory
There is always“=" which is formally not in the language.
Semantics of “=" is Leibniz’s (second-order) definition of equality

x=y: &= Yp(p(x) «— p(¥))
in contrast to its first-order theory.

For convenience, define L_ := Lu {=}.

Remark
There is no multiplicative inverse or division in L.
We do not want to deal with partial functions.
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Terms and Atomic Formulas

Terms
are w.l.o.g. polynomials with integer coefficients in a recursive representation

te (. ((ZxDXxaa]) - - )xD)xi]

Representation is unique and isomorphic to “distributive” Z[x;, . . ., X,].

Example

F=X+0e+%) fF=x+(2x%+2x) + (¢ +2X% + X)

We can efficiently reorder such polynomials, i.e., change the main variable.

Definitions - 7/42

Imnpnn:;
!




Terms and Atomic Formulas

Terms
are w.l.o.g. polynomials with integer coefficients in a recursive representation

te (. ((ZxDXxaa]) - - )xD)xi]

Representation is unique and isomorphic to “distributive” Z[x;, . . ., X,].

Example

F=X+0e+%) fF=x+(2x%+2x) + (¢ +2X% + X)
We can efficiently reorder such polynomials, i.e., change the main variable.

Atomic formulas (atoms) are of the form f R 0, where

» Rel_={< <, # > > =} asdiscussed

» f arecursive polynomial in some variables x;, ..., x, as above

» L_ is closed under negation: For R e L_ there is R € L_ such that

R -(fR0) — fRO.

Definitions - 7/42
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Quantifier-free Formulas and First-order Formulas

First-order formulas are obtained from atomic formulas using operators

true, false, A, v, 3x, Vx, where x is a variable

Further Boolean Operators

» — and «—— can be expressed without introducing quantifiers:
a— B =~ -aVvp, a— L ~ a—LBAB—a.
» Eliminate — using de Morgan’s law and closure property of L w.r.t. negation, e.g.:

-(x=0Ay>0) ~ x#£0vyc<O.

Definitions - 8/42
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Quantifier-free Formulas and First-order Formulas

First-order formulas are obtained from atomic formulas using operators

true, false, A, v, 3x, Vx, where x is a variable

Further Boolean Operators

» — and «—— can be expressed without introducing quantifiers:
a— B =~ -aVvp, a— L ~ a—LBAB—a.
» Eliminate — using de Morgan’s law and closure property of L w.r.t. negation, e.g.:

-(x=0Ay>0) ~ x#£0vyc<O.

Practical reson for restricting to A and v: Simplification
Quantifier-free formulas are first-order formulas not containing 3x or Vx.

Convention: the only formulas containing true, false are true, false themselves.
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Prenex Formulas

We assume w.l.0.g. that all first-order formulas are in a prenex normal form
Qan s Q1)(1 (W)
with Qq, ..., Q, € {3,V} and y quantifier-free.

Fact

(i) For every first-order formula @ there is an equivalent prenex formula

@ =Qpx,. . Qi(w).

(i) @ can be efficiently computed from @ such that the number of alternations in
the sequence Q,, ..., Q, is minimized.
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Virtual Substitution
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Eliminate from the Inside to the Qutside

Given ¢ = Q,x,...Q;x;(v)

» y is quantifier-free

» the variables of y are a subset of quantified (bound) variables X = {x,, ..., X}
and (free) parameters U = {u,, .. ., U}, Where
XnU=20.

We are going to eliminate Q, x;.

The rest is iteration with some optimizations to discuss later on.

We may assume that Q; = 3, because Vx;@ «— -3x,-@.
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Elimination of One Existential Quantifier

Given ¢ = 3x,(v)

» The variables in y are among x; and V; := (X'\ {x;}) u U.

» All variables from V, will play the same role now, say, V; = {v,, ..., Vi)

If x; does not occur in y, then we are done.

Key Idea

» Intuitively, 3x is like a big disjunction over all real numbers.

» Could there be a finite E set of terms ¢ such that
Ri=3x(w) — Vwix/t 7
teE

Modulo a couple of technical problems, there is essentially such a set.

ax |v|:mivl;k institut Virtual Substitution - 12/42
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Thought Experiment

Given @ = 3x,(v)

Temporarily and only in our minds (not in any algorithm) fix
(7 V) =(a,. .., a)) € R

such that y becomes univariate in Xx;.

Left hand sides of atomic formulas in y become univariate polynomials f € R[x;].

(1.36,3.26)

» Sets of satisfying values for x, in f(x;) R0 are

(6.74,-4.12)
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Thought Experiment

Given @ = 3x,(v)

Temporarily and only in our minds (not in any algorithm) fix

such that y becomes univariate in Xx;.

Left hand sides of atomic formulas in y become univariate polynomials f € R[x;].

(1.36,3.26)

» Sets of satisfying values for x, in f(x;) R0 are
finite unions of intervals [b,, b,], (b, b,), (by, by],
[b,, b,), where by, b, € R U {co}.

(6.74,-4.12)

i p | [ Virtual Substitution - 13/42



Thought Experiment

Given @ = 3x,(v)

Temporarily and only in our minds (not in any algorithm) fix

such that y becomes univariate in Xx;.

Left hand sides of atomic formulas in y become univariate polynomials f € R[x;].
o » Sets of satisfying values for x, in f(x,;) R 0 are
finite unions of intervals [b,, b,], (b, b,), (by, by],
[b,, b,), where by, b, € R U {co}.

5 ; > if b, € R, then f(b;) =0

» Set of satisfying values for x, in y has the same form.

(6.74,-4.12)
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Thought Experiment

Given @ = 3x,(v)

Temporarily and only in our minds (not in any algorithm) fix

such that y becomes univariate in Xx;.

Left hand sides of atomic formulas in y become univariate polynomials f € R[x;].
o » Sets of satisfying values for x, in f(x,;) R 0 are
finite unions of intervals [b,, b,], (b, b,), (by, by],
[b,, b,), where by, b, € R U {co}.

5 ; > if b, € R, then f(b;) =0

» Set of satisfying values for x, in y has the same form.
A is cut and v is intersection of satisfying sets.

(6.74,-4.12)
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Thought Experiment

Given @ = 3x,(v)

Temporarily and only in our minds (not in any algorithm) fix

such that y becomes univariate in Xx;.

Left hand sides of atomic formulas in y become univariate polynomials f € R[x;].
o » Sets of satisfying values for x, in f(x,;) R 0 are
finite unions of intervals [b,, b,], (b, b,), (by, by],
[b,, b,), where by, b, € R U {co}.

5 ; > if b, € R, then f(b;) =0

» Set of satisfying values for x, in y has the same form.
A is cut and v is intersection of satisfying sets.

» Idea: E =all b, or b, — ¢ and co.

(6.74,-4.12)
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Elimination Sets

Given ¢ = 3x,(y)

Supersets of the zeros of the left hand side terms

fe (. (ZwDlv)) . )vd)ix]

can be computed symbolically and uniformly.

Example
f=a(v,. .., v)x¢+b(v,. .., V)X, +c(vy, .. v,) yields candidate solutions
(-b+ Vb2 - 4ac)/2a for a#0Ab*-4ac>0, —c/b for a=0Ab#0.
- — _ ~ -~ v —— N——
t Y t 12
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Elimination Sets

Given ¢ = 3x,(y)

Supersets of the zeros of the left hand side terms

fe (. (ZwDlv)) . )vd)ix]

can be computed symbolically and uniformly.

Example
f=a(v,. .., v)x¢+b(v,. .., V)X, +c(vy, .. v,) yields candidate solutions
(-b+ Vb2 - 4ac)/2a for a#0Ab*-4ac>0, —c/b for a=0Ab#0.
- — _ ~ -~ v —— N——
t Y t 12

An elimination set E for x; and y is a finite set of pairs (y, t) such that
Ri=3x(w) — \ vawlx /1.

(v.t)eE
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Virtual Substitution

Given @ = 3x,(y) and E such that R £ 3x,(y) «— V v Ay[x /1.
(v.t)eE

Remaining Problem
t contain /, /-, 0, €, ..., which are not in our language L.

Solution: Virtual Substitution

[x//1] : atomic formulas — quantifier-free formulas
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Virtual Substitution

Given @ = 3x,(y) and E such that R £ 3x,(y) «— V v Ay[x /1.
(v.t)eE
Remaining Problem

t contain /, /-, 0, €, ..., which are not in our language L.

Solution: Virtual Substitution

[x//1] : atomic formulas — quantifier-free formulas

And beyond degree 2?

» Method generalizes to arbitrary degrees (in principle long known).

» first implementation will be available this year (PhD thesis by M. Kosta).
» For higher degrees, t will be way more abstract.
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Virtual Substitution

Given ¢ = 3x,(y) and E such that R | 3x,(w) — V vy Aw[x /1]
(v.t)eE
Remaining Problem

t contain /, /-, 0, €, ..., which are not in our language L.

Solution: Virtual Substitution

[x//1] : atomic formulas — quantifier-free formulas

And beyond degree 2?

» Method generalizes to arbitrary degrees (in principle long known).

» first implementation will be available this year (PhD thesis by M. Kosta).
» For higher degrees, t will be way more abstract.

Important

In practice, good simplification of quantifier-free (intermediate) results is crucial!
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Virtual Substitution by Example

Conventions: fe Z[y][x], f, g, 0 €Z%y]

Quotients
(fix + 1 <0) [x//g—;]

L 4+1,<0 = g0, +f,d5 < 0

Virtual Substitution - 16/42
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Virtual Substitution by Example
Conventions: fe Z[y][x], f, g, 0 €Z%y]

Quotients
(fix + 1 <0) [x//g—;]

L 4+1,<0 = g0, +f,d5 < 0

Formal solutions of quadratic equations
9 +9:V%
(-o)fereg2] - £

=0
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Virtual Substitution by Example
Conventions: fe Z[y][x], f, g, 0 €Z%y]

Quotients
(fix + 1 <0) [x//g—;]

L 4+1,<0 = g0, +f,d5 < 0

Formal solutions of quadratic equations
9 +9:V%
(r=0)[yeem] = $1%

-0
9,
TRV 0 = gi° - ;°g, =0 A Gig < 0
4
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Virtual Substitution by Example

Conventions: fe Z[y][x], f, g, 0 €Z%y]

Quotients
(fix + 1 <0) [x//g—;]

L 4+1,<0 = g0, +f,d5 < 0

Formal solutions of quadratic equations
9 +9:V%
(r=0)[yeem] = $1%

-0
9,
TRV 0 = gi° - ;°g, =0 A Gig < 0
4

S2® <0 = (6% - 0;°0: 2 0N 610, < O) v (6;° - 6°05 < 0 A G305 < 0)
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Virtual Substitution by Example

Conventions: fe Z[y][x], f, g, 0 €Z%y]

Quotients

(f1x+f0 SO)[X//Z_;] fg1 +f<0 f1g1g2+fog§ <0

Formal solutions of quadratic equations

(-] - 928
9,

A% 0 = 6 - g%, = 0AGig; <O

g1 +05 /T3 - *2
. <0= (g

Infinity

-0’95 20 g}g; < 0) v (g;® - gs°gs < 0 A G3g; < 0)

(X2 +fix + £, < 0)[xffoo] = £, <OV (f,=0Af, <0)V (L =0Af, =0Af <0)
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Virtual Substitution by Example

Conventions: fe Z[y][x], f, g, 0 €Z%y]

Quotients
(fix + 1 <0) [x//g—;]

"13—;+f050 f1019; + 1095 < 0

Formal solutions of quadratic equations

(f:0>[x/g1+gi@ = g:"’gg;\/g__o

= 0;° -9’9, =0Ag}gy <0

9i+% V0 _ 0
9%

9;+95/03 <0
A =

= (0" -9°9, 20Agig; <0)V(g;® - g5°g; < 0 A gog; < 0)

Infinity
(X2 +fix + £, < 0)[xffoo] = £, <OV (f,=0Af, <0)V (L =0Af, =0Af <0)

Positive infinitesimals
(Bx* +6x-3>0)[x/t-&]=3"+6t-3>0Vv (3°+6t-3=0A6t+6<0)
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Elimination of Several Existential Quantifiers by Block

Back to the bigger picture

LVIVTAG (W) e VIV vy A/
(v.t)eE

Disjunction V is compatible with existential quantifiers 3':

~vEvE ) ovawix /o~ IV Ty awlx /1)
(v.)eE (v.t)eE
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Elimination of Several Existential Quantifiers by Block

Back to the bigger picture

LVIVTAG (W) e VIV vy A/
(v.t)eE

Disjunction V is compatible with existential quantifiers 3:

~vEvE ) ovawix /o~ IV Ty awlx /1)
(v.t)eE (v.t)eE

Effect
» more local substitution of test points With the elimination of the next quantifiers

» even improves upper bound on asymptotic worst-case complexity

Virtual Substitution - 17/42

lleII:"




Complexity of Virtual Substitution

Upper bound on asymptotic worst-case complexity
doubly exponential in the input word length (and thus optimal)

More precisely

doubly exponential in # quantifier alternations

singly exponential in # quantifiers thanks to elimination by block
polynomial in #parameters (= unquantified variables)
polynomial in # atomic formulas

particularly good for

low degrees and many parameters

For comparision: Cylindrical Algberaic Decomposition (CAD)
[Collins 1973, Hong, Brown, ...] doubly exponential in the number of all variables

For comparison: Asymptotically fast procedures
[Renegar, Basu—Pollack—Roy, Grigoriey, ...] no practical relevance (so far)
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Variants of Quantifier Elimination
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Extended Quantifier Elimination

Generalize Ixp «— V yvAQt)x] to Ixp~ | yApt)x] x=t

(v.t)eE
Simple example revisited ————
az0Ab’ —4ac>0 x=_b_2—b;_4”aC
@ = 3x(ax® + bx + ¢ = 0) ~ a=0Ab#0 PR

b
a=0Ab=0Ac=0 x= oo,

Semantics (for fixed parameters)

Whenever some left hand side condition holds, then 3x¢ holds
and the corresponding right hand side term is one sample solution.

[M. Kosta, T.S., A. Dolzmann, J. Symb. Comput. 2016]

For fixed choices of parameters, standard values can be efficiently computed
for all co; and ¢; in a post-processing step.
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Generic Quantifier Elimination

Collect negated equations from the y in a global theory ©:

E={ . (SAOAY,1),...) ~ ©={.s£0,...}E={. . (.1}

Semantics
@' is correct for all choices of parameters satisfying ©:

AO — (¢ — o).
Important observation
exception set has a lower dimension than the parameter space

Simple example revisited

p=3x(ax®+bx+c=0) ~ ©={a#0}, @ =b"-4ac>0

Variants of Quantifier Elimination - 21/42
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Software
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Redlog and Reduce

Everything discussed here is available in our computer logic system Redlog:

http://www.redlog.eu

» interactive system, QE and decision for many domains, normal forms,
simplification, construction and decomposition of large formulas, ...

» interfaces to Qepcad B, Gurobi, Mathematica, Z3, ...

» more than 300 citations of applications in the literature:

geometry, verification, chemistry, life sciences, physics and
engineering, scientific computation, geometry and planning, . ..

» Redlog development since 1992 as part of the CAS Reduce [Hearn, 1968]

» Reduce/Redlog open-source (free-BSD) on Sourceforge since 12/2008

http://reduce-algebra.sourceforge.net

» 48,318 downloads since 12/2008 (7,496 in 2014), 500+ SVN commits per year
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Further Theories in Redlog

Integers (AAECC 2007, CASC 2007, CASC 2009)

» Presburger Arithmetic

» weak quantifier elimination for the full linear theory

» weak quantifier elimination also for higher degrees (special cases)

Mixed Real-Integer (Weispfenning at ISSAC 1999)
» experimental

Complex Numbers (using Comprehensive Grébner Bases)
» language of rings only

Differential Algebras (CASC 2004)
» language of rings with unary differential operator
» computation in differentially closed field (A. Robinson, Blum)

Innpnn:
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Further Theories in Redlog

Padic Numbers (JSC 2000, ISSAC 1999, CASC 2001)

» linear formulas over p-adic fields for p prime

» optionally uniformin p

» used e.g. for solving parametric systems of congruences over the integers

Terms (CASC 2002)
» Malcev-type term algebras (with functions instead of relations)

Queues (C. StraBer at RWCA 2006)
» two-sided queues over the other theories (2-sorted)
» Implemented at present for queues of reals

Propositional Formulas (CASC 2003, ISSAC 2010)
» generalization of SAT solving
» quantified propositional calculus, i.e., parametric QSAT (aka QBF) solving

ml;l\ institut Software - 25/42
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Some Other Software

» Qepcad B (Hong and Brown)
is the reference implementation for cylindrical algebraic decomposition (CAD).

» The computer algebra system Mathematica
has real QE: essentially CAD + virtual substitution for preprocessing.

» The computer algebra system Maple
has been used in recent research on CAD (Davenport et al.)

» The computer algebra system Risa/Asir (originally by Fujitsu)
has QE by virtual substitution (TS, 1996)

» Some prototypes in Japan
based on comprehensive Grébner bases (Sato et al.)
or Sturm—Habicht sequences (Anai et al. in Matlab)

» Specialized implementations of CAD in SMT solvers (z3)

» Specialized implementations of virtual substitutions for SMT (SMT-RAT)

Software - 26/42
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Applications in Geometry and Verification
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Variant of the Steiner—Lehmus-Theorem
[J. Autom. Reasoning 1998 — Joint work with A. Dolzmann, V. Weispfenning]

The longer bisector goes to the shorter side

hy = U>20Ax20 ca{uL.u2) \

hy = P=14+x2=0+ (u-x)? '
h3 E X250AI’2:(X2—X1)2 :
hy = UpXo+ UpXg — XoX3 =0 3

4 1X2 + UoX3 223 . W ASCL0) B=(1.0)
hs = xp<1A(-1)° = -1)°+u

hy = (1-u)P+iE<2? R

hs = (X4—X5)2+X§:(U1 = X5)% + (Up = Xp)® AUy Xg = UpX5 — Up + X =0

g = (u-x)°+u5<(x-1)7>+x
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Variant of the Steiner—Lehmus-Theorem
[J. Autom. Reasoning 1998 — Joint work with A. Dolzmann, V. Weispfenning]

The longer bisector goes to the shorter side

hy = U>20Ax20 ca{uL.u2) \

hy = P=14+x2=0+ (u-x)? '
h3 E X250AI’2:(X2—X1)2 :
hy = UpXo+ UpXg — XoX3 =0 3

4 1X2 + UoX3 223 . W ASCL0) B=(1.0)
hs = xp<1A(-1)° = -1)°+u

hy = (1-u)P+iE<2? R

hs = (X4—X5)2+X§:(U1 = X5)% + (Up = Xp)® AUy Xg = UpX5 — Up + X =0

g = (u-x)°+u5<(x-1)7>+x

7
> Q= Vx6Vx5VX4Vx3Vx2VX1Vr< A h— g)
i=1
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Variant of the Steiner—Lehmus-Theorem
[J. Autom. Reasoning 1998 — Joint work with A. Dolzmann, V. Weispfenning]

The longer bisector goes to the shorter side

hy = U>20Ax20 ca{uL.u2) \

hy = P=14+x2=0+ (u-x)? |
h3 E X250AI’2:(X2—X1)2 :
hy = UpXo+ UpXg — XoX3 =0 ;

4 1X2 + UpX3 223 . W ASCL0) B=(1.0)
h5 E X4S1 /\(X4—1) :(U1 —1) +U2 N . \, L

hy = (1-u)P+iE<2? Ty

hs = (X4—X5)2+X§:(U1 = X5)% + (Up = Xp)® AUy Xg = UpX5 — Up + X =0

g = (u-x)°+u5<(x-1)7>+x

7
> Q= Vx6Vx5VX4Vx3Vx2VX1Vr< A h— g)
i=1

» Generic QE (1.1s): @' 231 atomic formulas, © = {u? - 2u; + U3 -3 # 0, uy # 0, Up # O}

-

(ug=1)2+ud#4
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Variant of the Steiner—Lehmus-Theorem
[J. Autom. Reasoning 1998 — Joint work with A. Dolzmann, V. Weispfenning]

The longer bisector goes to the shorter side

hy = U>20Ax20 ca{uL.u2) \

hy = P=14+x2=0+ (u-x)? |
h3 E X250AI’2:(X2—X1)2 :
hy = UpXo+ UpXg — XoX3 =0 ;

4 1X2 + UpX3 223 . W ASCL0) B=(1.0)
h5 E X4S1 /\(X4—1) :(U1 —1) +U2 N . \, L

hy = (1-u)P+iE<2? Ty

hs = (X4—X5)2+X§:(U1 = X5)% + (Up = Xp)® AUy Xg = UpX5 — Up + X =0

g = (u-x)°+u5<(x-1)7>+x

7
> Q= Vx6Vx5VX4Vx3Vx2VX1Vr< A h— g)
i=1

» Generic QE (1.1s): @' 231 atomic formulas, © = {u? - 2u; + U3 -3 # 0, uy # 0, Up # O}

-

» CAD (0.9 5): VuyVup(A© — ') v (U =2+u5 4
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Collision Avoidance with Adaptive Cruise Control
[ISSAC 2011 — Joint Work with A. Tiwari @SRI]

System dynamics

Vi = a; € [-5,2] velocity and accelleration of leading car
v=ace[-5 2] velocity and accelleration of rear car
gap=v;—-v

a=-3a-3(v-v)+(gap - (v+10)) control law for rear car

Initial states and safe states
Int=gap=10Aa=0AV;=CAV=0C,
Safe=gap >0
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Collision Avoidance with Adaptive Cruise Control
[ISSAC 2011 — Joint Work with A. Tiwari @SRI]

System dynamics

Vi = a; € [-5,2] velocity and accelleration of leading car
v=ace[-5 2] velocity and accelleration of rear car
gap=v;—-v

a=-3a-3(v-v)+(gap - (v+10)) control law for rear car

Initial states and safe states
Int=gap=10Aa=0AV;=CAV=0C,
Safe=gap >0

Certificate-based approach to find a set Inv such that
1. Init C Inv

2. Inv C Safe

3. System dynamics cannot cause the system to leave Inv.
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Collision Avoidance with Adaptive Cruise Control

Linear ansatz
Inv

p>0 where p:=c3v+cuvy+csa+gap+ G
-5<a<2A-5<g<2Av20AVv20

!

Inv

Certificate as a formula
dcgde,dcsAc VvV, VgapVava, (@, A @, A @3)

where @; = InitAlnv' — Inv
@, = InvAlnv' — Safe
@3 = p=0AInv —p=>0
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Collision Avoidance with Adaptive Cruise Control

Linear ansatz
Inv

p>0 where p:=c3v+cuvy+csa+gap+ G
-5<a<2A-5<g<2Av20AVv20

!

Inv

Certificate as a formula
de;3c,dc;Ac VvV VgapVava (@, A @, A @3)

where @; = InitAlnv' — Inv
@, = InvAlnv' — Safe
@3 = p=0AInv —p=>0

After 1 minute of computation:
» 584 disjuncts, 33365 atomic formulas, depth 13, some still containing 3c;

» first 33 disjuncts automatically simplify to cg -30c,-75<0forc, >0,c, >0.

» = no collision for ¢, = v < 32
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Cylindrical Algebraic Decomposition (CAD)

l l I I I max planck institut CAD for Satistfiability Checking - 31/42
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From Sign Invariant Regions to CAD Cells

@(f,, f,) is a Boolean

combination of 19

constraints with left hand o8]

sides f;, f, and right

hand sides 0. %7
0.44

f,(x,y) = 2y° —2x* - 3x°

;1 ggg = ;1 <00 16 U—l‘A 12 -1\ 08 -0.6 -04 02 02 04 06 08 1(

1 - > -0.2

fi(C)=-5<0

f,(D) =0 0]
-0.64
0.84
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From Sign Invariant Regions to CAD Cells

@(f,, f,) is a Boolean
combination of

constraints with left hand o8]
sides f;, f, and right
hand sides 0. %1
0.44
f,(x,y) = 2y° —2x* - 3x°
;1%’;3:;1 <00 16 U14 12 - 08 06 -04 -02 02 04 06 08 -
1 - > -0.2
fi(C)=-5<0
f,(D) =0 4]
-0.64
Lx,y)=y*+x* -1
0.84
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From Sign Invariant Regions to CAD Cells

@(f,, f,) is a Boolean
combination of
constraints with left hand
sides f;, f, and right
hand sides 0.

f,(x,y) = 2y° —2x* - 3x°

f,(A)=-1<0
f(B)=2>0
£,(C)=-5<0
£,(D) =0

0.84

0.6

0.44

l l I p I I ‘mu\ p]zlnitl;k institut
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From Sign Invariant Regions to CAD Cells

@(f,, f,) is a Boolean
combination of

constraints with left hand o8]
sides f;, f, and right
hand sides 0. %1
0.44
f,(x,y) = 2y° —2x* - 3x°
;1%’;%:51 <00 16 [)1.4 12 -A 0. 06 -04 -0, 02 04 06 08 -
1 = > -0.2
fi(C)=-5<0
f(D)=0 04
-0.64
Lx,y)=y*+x* -1
-0.84

\

9(x) = —2x® - 3x*

projection polynomials
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Projection and Base Phase (1)

o(f. 1)

» projection operator
computes projection set:

A y). By} =

0.5

®
>

-0.5
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Projection and Base Phase (1)

0.5

-0.5
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o(f. 1)

» projection operator
computes projection set:

A y). By} =

» Projections of critical points
are among the zeros of g,

s Ok

CAD for Satistfiability Checking - 33/42



Projection and Base Phase (1)

0.5

®

-0.5
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o(f. 1)

» projection operator
computes projection set:

A y). By} =

» Projections of critical points
are among the zeros of g,
ey Ok-
» The zeros of the g; are real
algebraic numbers, e.g.

—V2 = (x2-2,]-10,1])
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Projection and Base Phase (1)

o(f. 1)

» projection operator
computes projection set:

A y). By} =

» Projections of critical points
are among the zeros of g,
ey Ok-
» The zeros of the g; are real
algebraic numbers, e.g.

—V2 = (x2-2,]-10,1])

» Their computation is
univariate computer algebra.

CAD for Satistfiability Checking - 33/42




Projection and Base Phase (2)

0.5

o(f. 1)

» Add points
(anywhere) between the zeros
as test points for the
1-dimensional cells.

{ 2

-0.5
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Projection and Base Phase (2)

o(fi. 1)

» Add points

(anywhere) between the zeros
0s as test points for the
1-dimensional cells.

» This yields a decomposition

L]
L]
°
®
°
°

>
°
°

o 7o of R' (the x-axis).

-0.5
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Projection and Base Phase (2)

o(fi. 1)

» Add points

(anywhere) between the zeros
0s as test points for the
1-dimensional cells.

» This yields a decomposition

L]
L]
°
®

J
°

>
°

s 05 05 ® of |R1 (the X-aXIS).

» We want to lift this
decomposition to IR%.
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Projection and Base Phase (2)

o(f. 1)

» Add points
(anywhere) between the zeros
as test points for the
1-dimensional cells.

» This yields a decomposition
of R' (the x-axis).

» We want to lift this
decomposition to IR%.

» By the way: How many cells
will there be in IR*?
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Extension Phase (Lifting)

o(f. 1)
For each test point t from the
base phase:

» compute univariate

fi(ty), h(Ly).

0.5

L]
L]
°
®
°
°

>
°
°

2 ® with algebraic number
coefficients.

-0.5
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Extension Phase (Lifting)

0.5

L]
°
®

J

-0.5
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o(f. 1)
For each test point t from the
base phase:

» compute univariate

fi(ty), h(Ly).

with algebraic number
coefficients.

» compute zeros and points
between zeros uy, ..., U.
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Extension Phase (Lifting)

l l I p I I :nu\ p]:lnitl;k institut

o(f. 1)
For each test point t from the
base phase:

» compute univariate

fi(ty), h(Ly).

with algebraic number
coefficients.

» compute zeros and points
between zeros uy, ..., U.

» this yields test points
(tu), ..., (t,us) € R?

for the cylinder over t.

CAD for Satistfiability Checking - 35/42



Example: a CAD as a “data structure”

sz{x%—l—x%—kx%—él}
sz{x%—i—:zz%—éi}
P = {z1+2,21 - 2}

C. W. Brown, U.S. Naval Academy
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Example: a CAD as a “data structure”

sz{x%—l—x%—kx%—él}
sz{x%—i—:zz%—éi}
P = {z1+2,21 - 2}

C. W. Brown, U.S. Naval Academy



SAT-Checking

o(f. 1)
» Finitely many test points
T= {(t1,u,111) ----- (t1:Ut1,s1):
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SAT-Checking

o(f. 1)
» Finitely many test points
T= {(t1,u,111) ----- (t1:Ut1,s1):

(tr: Ut,,1) """ (tr' ut,,s,)}

» REJo(f,, h)iffex. te T s.t.

R (x.y)=t [ o(f.f).
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Complete Decision Procedure

l l I p I I ‘mu\ p]zlnitl;kinsl\ult

» Finitely many test points

T= {(twutm) ----- (11’Ut1,s1)’
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Complete Decision Procedure

lllpll"

» Finitely many test points

T= {(t1’ut1,1) ----- (t1’ut1,s1)’

» Vx3Ayo(f,. f):
“In each cylinder there is a cell
suchthat...”

Satisfying t in each row of T?
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Complete Decision Procedure

» Finitely many test points

T= {(t1’ut1.1) ----- (t1’ut1,s1)’

» Vx3Ayo(f,. f):
“In each cylinder there is a cell
suchthat...”

Satisfying t in each row of T?
» IXVyo(fy, 1):

“There is a cylinder such that
foreachcell...”

A satisfying column of T?

CAD as a Complete Decision Procedure - 37/42
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Complete Decision Procedure

l l I I I max planck institut
i ik

Finitely many test points

T= {(t1’ut1.1) ----- (t1’ut1,s1)’
(tr u 1) """ (tr! ut, s,)}
Vx3Ay(f, f):

“In each cylinder there is a cell
suchthat...”

Satisfying t in each row of T?
IXVyo(fy. f):

“There is a cylinder such that
foreachcell...”

A satisfying column of T?

The innermost variable y was
projected first.
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Some Remarks Before We Continue

» Given @(f,, ;) essentially all the algorithmic work we have done is valid for
arbitrary Boolean combinations w/(f;, f,) of arbitrary constraints with left hand
sides f;, f, (and right hand sides 0).
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» Furthermore, even for arbitrary quantification QxQ'y (in that order).
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» Given @(f,, ;) essentially all the algorithmic work we have done is valid for
arbitrary Boolean combinations w/(f;, f,) of arbitrary constraints with left hand
sides f;, f, (and right hand sides 0).

» Furthermore, even for arbitrary quantification QxQ'y (in that order).

» This indicates that the CAD procedure is somewhat an overkill.

o(n) .
» On the other hand, the asymptotic worst complexity 227" in terms of the input
word length nis known to be optimal.
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» Furthermore, even for arbitrary quantification QxQ'y (in that order).

» This indicates that the CAD procedure is somewhat an overkill.

o(n) .
» On the other hand, the asymptotic worst complexity 227" in terms of the input
word length nis known to be optimal.

» Asymptotically better bounds with refined complexity parameters.
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» Furthermore, even for arbitrary quantification QxQ'y (in that order).

» This indicates that the CAD procedure is somewhat an overkill.

o(n) .
» On the other hand, the asymptotic worst complexity 227" in terms of the input
word length nis known to be optimal.

» Asymptotically better bounds with refined complexity parameters.

» In practice, for general input, CAD is the best we have.
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Some Remarks Before We Continue

» Given @(f,, ;) essentially all the algorithmic work we have done is valid for
arbitrary Boolean combinations w/(f;, f,) of arbitrary constraints with left hand
sides f;, f, (and right hand sides 0).

» Furthermore, even for arbitrary quantification QxQ'y (in that order).

» This indicates that the CAD procedure is somewhat an overkill.

o(n) .
» On the other hand, the asymptotic worst complexity 227" in terms of the input
word length nis known to be optimal.

» Asymptotically better bounds with refined complexity parameters.
» In practice, for general input, CAD is the best we have.

» Until now, we have not used and did not “really know” the cells — only test points.

CAD as a Complete Decision Procedure - 38/42
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Quantifier Elimination

The essential new concept with QE is quantifier-free description of cells.

This is relevant also for recent decision procedures (Jovanovic & de Moura).
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Quantifier Elimination

The essential new concept with QE is quantifier-free description of cells.

This is relevant also for recent decision procedures (Jovanovic & de Moura).

» Given y(x, ..., X)) = Qui1 Xyt - QX@(X. ..., X Xpyts - - X,).
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Quantifier Elimination

The essential new concept with QE is quantifier-free description of cells.

This is relevant also for recent decision procedures (Jovanovic & de Moura).

» Given w(xy, ..., X) = Qe Xkpq - QX @(Xq, o Xp Xiyqs - - -2 X,)-
> Xq, ...X, are parameters.
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Quantifier Elimination

The essential new concept with QE is quantifier-free description of cells.

This is relevant also for recent decision procedures (Jovanovic & de Moura).

» Given y(x, ..., X)) = Qui1 Xyt - QX@(X. ..., X Xpyts - - X,).

> X, ...X, are parameters.

» Construct CAD with projection order x, — -+ — X, 4 = X — -+ — X;.
That is, the base phase takes place in R[x;].
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Quantifier Elimination

The essential new concept with QE is quantifier-free description of cells.

This is relevant also for recent decision procedures (Jovanovic & de Moura).

v

Given w(xy, ..., X)) = Qui1 Xyt - QX@(X. ..., X Xpyts - - X,).
> Xq, ...X, are parameters.

v

Construct CAD with projection order x, — -+ — X, 4 = X, — -+ — X;.
That is, the base phase takes place in R[x;].

Consider the finite set C ¢ Pot(IRk ) of cells in parameter space,
i.e., at projection level k with polynomials from R[x;, .. ., X -

v
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Quantifier Elimination

The essential new concept with QE is quantifier-free description of cells.

This is relevant also for recent decision procedures (Jovanovic & de Moura).

v

Given w(xy, ..., X)) = Qui1 Xyt - QX@(X. ..., X Xpyts - - X,).
> X, ...X, are parameters.

v

Construct CAD with projection order x, — -+ — X, 4 = X, — -+ — X;.
That is, the base phase takes place in R[x;].

v

Consider the finite set C ¢ Pot(IRk ) of cells in parameter space,
i.e., at projection level k with polynomials from R[x;, .. ., X -

v

For each ¢ € C with test point t, € R™* we can decide w(t,) and collect
TRUECELLS ={ce C|R, (X, ..., x)=t F w}cC
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Quantifier Elimination

The essential new concept with QE is quantifier-free description of cells.

This is relevant also for recent decision procedures (Jovanovic & de Moura).

» Given w(xy, ..., X)) = Qui1 Xyt - QX@(X. ..., X Xpyts - - X,).
> X, ...X, are parameters.

» Construct CAD with projection order x, — -+ — X, 4 = X, — -+ — X;.
That is, the base phase takes place in R[x;].

» Consider the finite set C ¢ Pot(IRk ) of cells in parameter space,
i.e., at projection level k with polynomials from R[x;, .. ., X -

» For each ¢ € C with test point t, € R™* we can decide w(t,) and collect
TRUECELLS ={ce C|R, (X, ..., x)=t F w}cC

» Assume that for ¢ € C we have a quantifier-free description formula
DXy, ..., Xi), i.e. X € ciff R = A (x).
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Quantifier Elimination

The essential new concept with QE is quantifier-free description of cells.

This is relevant also for recent decision procedures (Jovanovic & de Moura).

» Given w(xy, ..., X)) = Qui1 Xyt - QX@(X. ..., X Xpyts - - X,).
> X, ...X, are parameters.

» Construct CAD with projection order x, — -+ — X, 4 = X, — -+ — X;.
That is, the base phase takes place in R[x;].

» Consider the finite set C ¢ Pot(IRk ) of cells in parameter space,
i.e., at projection level k with polynomials from R[x;, .. ., X -

» For each ¢ € C with test point t, € R™* we can decide w(t,) and collect
TRUECELLS ={ce C|R, (X, ..., x)=t F w}cC

» Assume that for ¢ € C we have a quantifier-free description formula
DXy, ..., Xy), i.e. X € ciff R = A (x). Then

R W« Verrueceis Ac-
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Solution Formula Construction Example

cell P, Py Py T/F
1,1 - — + F
21 0 — + 17
2,2 0 - 0 T
2,3 0 = & F
31+ - 4+ F
3,2 + - 0 F
3,3 + - - T
334 4+ — 0 F
3,5+ - + F
41 + 0 + g
4,2 + 0 0 F
43 + 0 + F
51 + + + F

C. W. Brown, U.S. Naval Academy
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Solution Formula Construction Example

cell P, Py Py T/F
1,1 - — + F
21 0 — + 17
2,2 0 - 0 T
2,3 0 = & F
31+ - 4+ F
3,2 + - 0 F
3,3 + - - T
334 4+ — 0 F
3,5+ - + F
41 + 0 + g
4,2 + 0 0 F
43 + 0 + F
51 + + + F

P211<0 \Y Pl"l:()/\Pg‘l:()

C. W. Brown, U.S. Naval Academy



Solution Formula Construction Problem

Tyl +12P—1<0 A 2 —y <0

cell z+1 -1 22-2 T/F

1 — - + F

2 0 = T F

/ 3+ - T

4 + = 0 T

/ 5 + - - T

6 IF = 0 F

T+ + F

/ &8 + 0 + F
9 + + + F

C. W. Brown, U.S. Naval Academy



Solutions to the Solution Formula Problem (1)
Augmented Projection

» The approach of the original Collins article (1975).
» Idea: Produce sulfficiently many polynomials during projection.
» Technically one adds “lots of derivatives.”

A very simple demonstration of the idea

(136, 3.26)

» Consider a single polynomial f = x® — 12x® + 44x — 48.

(6.74,-4.12)

CAD for Quantifier Elimination - 40/42
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(136, 3.26)

» Consider a single polynomial f = x® — 12x® + 44x — 48.
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Augmented Projection

» The approach of the original Collins article (1975).
» Idea: Produce sulfficiently many polynomials during projection.
» Technically one adds “lots of derivatives.”

A very simple demonstration of the idea

(136, 3.26)

» Consider a single polynomial f = x® — 12x® + 44x — 48.

f > 0 describes ]2, 4[ U |6, oo, f = 0 describes {2,4, 6} .

v

v

f cannot describe exclusively 2, 4] or {4}.

» f=0Af =3x* - 24x + 44 < 0 describes {4}.

(6.74,-4.12)
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Solutions to the Solution Formula Problem (1)
Augmented Projection

» The approach of the original Collins article (1975).
» Idea: Produce sulfficiently many polynomials during projection.
» Technically one adds “lots of derivatives.”

A very simple demonstration of the idea

(136, 3.26)

» Consider a single polynomial f = x® — 12x® + 44x — 48.

f > 0 describes ]2, 4[ U |6, oo, f = 0 describes {2,4, 6} .

v

v

f cannot describe exclusively 2, 4] or {4}.
» f=0Af =3x* - 24x + 44 < 0 describes {4}.
» f>0Af" =6x-24 < 0describes ]2, 4.

(6.74,-4.12)
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Solutions to the Solution Formula Problem (1)
Augmented Projection

» The approach of the original Collins article (1975).
» Idea: Produce sulfficiently many polynomials during projection.
» Technically one adds “lots of derivatives.”

A very simple demonstration of the idea

(136, 3.26)

» Consider a single polynomial f = x® — 12x® + 44x — 48.
f > 0 describes ]2, 4[ U |6, oo, f = 0 describes {2,4, 6} .

f cannot describe exclusively 2, 4] or {4}.

v

v

» f=0Af =3x* - 24x + 44 < 0 describes {4}.
» f>0Af" =6x-24 < 0describes ]2, 4.

v

Isn’t this somehow Rolle’s Theorem? Yes it is!

(6.74,-4.12)
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» The approach of the original Collins article (1975).
» Idea: Produce sulfficiently many polynomials during projection.
» Technically one adds “lots of derivatives.”

A very simple demonstration of the idea

(136, 3.26)

» Consider a single polynomial f = x® — 12x® + 44x — 48.
f > 0 describes ]2, 4[ U |6, oo, f = 0 describes {2,4, 6} .

f cannot describe exclusively 2, 4] or {4}.

v

v

» f=0Af =3x* - 24x + 44 < 0 describes {4}.
» f>0Af" =6x-24 < 0describes ]2, 4.

v

Isn’t this somehow Rolle’s Theorem? Yes it is!

(6.74,-4.12)

Augmented projection is considered practically infeasible.
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Solutions to the Solution Formula Problem (2)
Extended Tarski Language

» PhD thesis of Brown (1999).
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» Predicate is false if f has less than n roots.
Examples
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root, (f, 1) < x < root, (f, 2) describes |2, 4].

CAD for Quantifier Elimination - 41/42

Innpnn:
\




Solutions to the Solution Formula Problem (2)
Extended Tarski Language

» PhD thesis of Brown (1999).
» Use extended language with predicates like

x groot,(f(a),n), oe{=.<> < 2 #}
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Solutions to the Solution Formula Problem (2)
Extended Tarski Language

» PhD thesis of Brown (1999).
» Use extended language with predicates like

x groot,(f(a),n), oe{=.<> < 2 #}
» Predicate is false if f has less than n roots.
Examples

» f=x>—12x° 4 44x - 48 revisited:
root, (f, 1) < x < root, (f, 2) describes |2, 4].
» In several variables one could obtain, e.g.,
root,(a@® —2,1) < x < root,(a® — 2,2) A
root, (38" — B+ 4x°,3) < y < root,(38" - B+ 4x°,5)

Efficiently check for x, y € R if this holds.

State-of-the-art in QEPCAD and Mathematica, and used in Z3/NLSAT.
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Summary

» virtual substitution for real quantifier elimination and some variants

(extended, generic)
» software: Redlog and other

» other theories

(integers, comples, differential, padic, terms, queues, PQSAT)
» applications in geometry, verification, . ..

» cylindrical algebraic decomposition (CAD)
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