Synthesis

Sven Schewe

University of Liverpool

AVACS Autumn School, October 2", 2015

A Modest Goal

@ obtain correct systems ...

A Modest Goal

@ obtain correct systems ...

@ ...without doing anything.

Specification correct
|
/ \

Implementation incorrect

implementation

Specification =—————=> | Synthesis

———
——

unrealisable

Applications

@ Detection of inconsistent specifications

o Partial design verification
(Early error detection)

o Error localisation

o Automated prototyping

Synthesis

Specification

ATL, ATL*, CL
alternating-time p-calculus

- —

Requirement: The scientist can get as much coffee as she likes.

ATL*: {(scientist) [0 < getoofree

Synthesis

Specification
& Architecture
+ CTL, LTL, CTL*
+ p-calculus

' environment |

want coffee
8et coffee

brew! .
controller brewing group
grind! «
sensor

ind
grinder info

Requirement: The scientist can get as much coffee as she likes.

LTL: O (Wantcoffee =< getcoﬁ‘ee)
CTL: VO (Wa Nteoffee — VO getcoffee)

Synthesis

Specification
& Partial Design

+ CTL, LTL, CTL*
+ p-calculus

:.environment |

want coffee
8et coffee

brew!

brewing group

b_info

controller

grind!

- g_info

Requirement: The scientist can get as much coffee as she likes.

sensor

LTL: O (Wantcoffee =< getcoﬁ‘ee)
CTL: VO (Wa Nteoffee — VO getcoffee)

Synthesis

Specification Specification
& Partial Design
ATL, ATL*, CL + CTL, LTL, CTL*

alternating-time p-calculus + p-calculus

:.environment |

want coffee
8t coffee

brew!

brewing group

b_info

controller

grind!

g_info

sensor

-~

Automata-Theory

[J/
-~

Constructive Non-Emptiness Games

The birth of the synthesis problem

Alonzo Church Summer Institute of Symbolic Logic
Cornell University 1957

Given a requirement which a circuit is to satisfy, we may suppose
the requirement expressed in some suitable logistic system which is
an extension of restricted recursive arithmetic. The synthesis
problem is then to find recursion equivalences representing a circuit
that satisfies the given requirement (or alternatively, to determine
that there is no such circuit).

Church’s Solvability Problem

//E_ ™\ Input m Output
l\\ nv// Variables Variables
Church’s Solvability Problem 1963

Given: an interface specification
(identification of input and output variables)
and a behavioural specification ¢

Sought: an implementation (/nput™ — Output), satisfying ¢

Q O

Y

Input

Church’s Solvability Problem

TN

/E \ Input Output

I En ‘—»I m—»
. V// Variables Variables

Church’s Solvability Problem 1963

Given: an interface specification
(identification of input and output variables)
and a behavioural specification ¢

Sought: an implementation (/nput™ — Output), satisfying ¢

Env || Proc = ¢

Church’s Solvability Problem

TN

/E \ Input Output

I En ‘—»I m—»
. V// Variables Variables

Church’s Solvability Problem 1963

Given: an interface specification
(identification of input and output variables)
and a behavioural specification ¢

Sought: an implementation (/nput™ — Output), satisfying ¢

dProc VEnv. Env || Proc |= ¢

Part |

But how? History and Simplicity of Synthesis

Synthesis through the ages

1963 Church’s solvability problem
1969 Buchi and Landweber, finite games of infinte duration

1969 Rabin’'s solution based on deterministing w-automata

Algorithms LTL
1989 Pnueli and Rosner
2005 Kupferman and Vardi “Safraless”
2007 S and Finkbeiner “Buchiless”

Tools LTL
2009 Filiot, Jin, and Raskin (Antichain)
2010 Ehlers (BDD)

Algorithms

in the vicinity of synthesis

Tree Automata
© Projection
@ Narrowing / information hiding

simple

simple
v

Word Automata
@ determinisation

difficuItJ

Algorithms

in the vicinity of synthesis

Tree Automata

© Projection simple

@ Narrowing / information hiding simple
Word Automata

© determinisation difficult |

But why is it difficult?

Finite and Buchi Automata

a, b b
a,b
=B
Finite Automata
interpreted over finite words here: over X = {a, b}

run: start at some initial state

stepwise: read an input letter, and
traverse the automaton respectively

accepting: is in a final state after processing the complete word

language: words with accepting runs
here: * \ {¢e}

Finite and Buchi Automata
a,b b

a,b
SO0

Buchi Automata
interpreted over infinite words here: over X = {a, b}

run: start at some initial state

stepwise: read an input letter, and
traverse the automaton respectively

accepting: is infinitely often in a final state while processing
the complete w-word

language: words with accepting runs
here: w-words with finitely many a’s

Determinisation of Finite Automata

a,b b

Determinisation of Buchi Automata

a, b b
a,b

Deterministic Buchi Automata ...

...are less expressive than nondeterministic Buchi automata.

Example Language: All words with finitely many a’s
Construct an input word by repeatedly
@ choosing b's until a final state is reached

@ choosing an a once.

=- determinisation requires more involved acceptance
condition

Determinisation of Buchi Automata

a, b b
a,b
{0
a b

-~
=0

Table of acceptable infinity sets.

finitely many a’s: {{ﬂ}}

Muller Automata

Determinisation of Buchi Automata

Muller Automata normal forms
Rabin: e list of pairs (A;j, R;j) of accepting and rejecting
states
@ for some pair, some accepting and no rejecting
state occurs infinitely often

Determinisation of Buchi Automata

A
(==

Muller Automata normal forms
Rabin: e list of pairs (A;j, R;j) of accepting and rejecting
states
@ for some pair, some accepting and no rejecting
state occurs infinitely often
Streett: @ list of pairs (A;, R;) of accepting and rejecting
states (dual case)
@ for all pairs, some accepting or no rejecting
state occurs infinitely often

Determinisation of Buchi Automata

Muller Automata

Rabin:

Streett:

Parity:

)

N~
(==}

list of pairs (A;j, R;) of accepting and rejecting
states

for some pair, some accepting and no rejecting
state occurs infinitely often

normal forms

list of pairs (A;j, R;j) of accepting and rejecting
states (dual case)
for all pairs, some accepting or no rejecting
state occurs infinitely often

priority function states - N
lowest priority occurring infinitely often is even
Rabin chain or Streett double chain condition

1969
1988
1988
2006
2008
2008
2012
2014

Algorithms

determinising w-automata

Rabin’s solution based on deterministing w-automata

Safra n9()

Michel n?(")

Piterman O(n!?)

S O((cn)™) with ¢ ~ 1.65

(bound by [S08])
Rabin

Colcombet and Zdanowski 6((cn)") Rabin

S and Varghese
S and Varghese 6(n!?)

determinising GBA
parity and Streett

Part |l

Warm-Up: LTL — Automata & Simple Cases

Automata & Games

e LTL

@ LTL = alternating word automata (4.A)
@ AA = acceptance game for traces

@ AA # existence game for traces

@ NBA = existence game for traces
@ NBA and model checking

Linear-Time Temporal Logics

— as a word language —

LTL formulas
pu=true [pl-poAp|eVe[Op|O¢e|Oe|eUyp J

el T T T T T T]
oo L Jel T [[T [T T]
S L T T [T [Jel [|
O¢: |lelelelelelelelele]e]
o Lo leleleleleleoleld] |

Linear-Time Temporal Logics

— a backwards aproach —

OO OpVO-p

a harmless tautology

o lel [elelel [plelp] .]
op | [VIVIVI [VIVIVIVIV]
ow (VI [[[V T [T []

OpVO-p: ‘V‘V‘V‘V‘V‘V‘V‘V‘V‘V‘
CopvOo-p VI IVIVIVIVIVIVIVIVIV]
0o opvo-p [VIVIVIVIVIVIVIVIV]

Acceptance Game

OO OpVO-p AA
QO O0COpVOp = 0O OpVOpPAO OpVO—p
Q@ OCO0OpVO—p > 0O>OpPVOPVOPVO-p
Q OpvVO—p » OpVO—p
Q Op =+ Op
QO0-p —~ Ozp

polel [elelel [plelp].]

Emptiness Game

oo OpvO-p AA
Q@ IO OpVO—p = O0OOC OPVOpPAS OPVO P
Q@ OO0OpVO—p > 0O>OpPVOPVOPVO-p
Q@ OpvVO—p —» OpVO—p
QOp — Op
©0-p—~Ozp

Emptiness Game

0o OpAO-p AA
QIO OpPAO—p = OOOC OPAOpPAS OPAO P
Q@ OCOpAO—p > O>OPAOPVOPAO P
Q@ OpANO—p = OpAO—p
QOp — Op
©0-p—~Ozp

@ the acceptance player can cheat

Emptiness Game

OO OpAO-p AA
QO O0COpAOp = OO OPAOPAO OPAO P
Q@ OCOpAO—p > O>OPAOPVOPAO P
Q@ OpANO—p = OpAO—p
QOp — Op
©0-p—~Ozp

@ the acceptance player can cheat

by using previous choices of the rejection player when
constructing a “model”

Acceptance Game

— non-deterministic automata —

oo OpvO-p GBA
Q {0,$,0p V0O —p,0p,p}

Q {0,$,0pVO-p,Op,—p}

9 {0,$,0pVO-p,0-p,p}

9 {0,$,0p VO p,0p,—p}

Q {0.O,p}

Q {O0,.&,-p}
o lel [elplel [plelp] .]
GBA: [3]2]1]1|3]2]1]1]1]1]

Emptiness Game

— non-deterministic automata —

oo OpvO-p GBA
® {0,.$,0p VO —p,Op,p}

Q@ {0,$,0p V0O —p,0 p,—p}

© {0,$,0p VO —p,O-p,p}

9 {0,$,0p VO p,0p,—p}

9 {0,<O,p}

9 {0,O, -p}

Model Checking Game

— non-deterministic automata —
oo OpvO-p GBA
® {0,.$,0p VO —p,Op,p}
Q@ {0,$,0p VO —p,Op,—p}
© {0,$,0p VO —p,O-p,p}
Q {0,$,0p VO p, O p,—p}
9 {0.<,p}
0 {O0,&,-p}

Q O
Input — SD

Model Checking Game

— non-deterministic automata —
oo OpvO-p GBA
® {0,.$,0p VO —p,Op,p}
Q@ {0,$,0p VO —p,Op,—p}
© {0,$,0p VO —p,O-p,p}
Q {0,$,0p VO p, O p,—p}
9 {0.<,p}
0 {O0,&,-p}

Q O

7

Model Checking Game

— non-deterministic automata —
oo OpvO-p GBA
® {0,.$,0p VO —p,Op,p}
Q@ {0,$,0p VO —p,Op,—p}
© {0,$,0p VO —p,O-p,p}
Q {0,$,0p VO p, O p,—p}
9 {0.<,p}
0 {O0,&,-p}

Q O

= -

Model Checking Game

— non-deterministic automata —
oo OpvO-p GBA
® {0,.$,0p VO —p,Op,p}
Q@ {0,$,0p VO —p,Op,—p}
© {0,$,0p VO —p,O-p,p}
Q {0,$,0p VO p, O p,—p}
9 {0.<,p}
0 {O0,&,-p}

Q O

7~

Model Checking Game

— universal automata —
0o OpVvVO-p UCA
® {0,.$,0p VO —p,Op,p}
9 {0,$,0pVO—p,Op,—p}
© {0,$,0p VO —p,O-p,p}
Q {0,$,0p VO p, O p,—p}
9 {0.<,p}
0 {0.&, -p}

Q O
Input — SD

Model Checking Game

— universal automata —

O OpVvVO-p UCA
NBA for OO O-pAQPp
Q {C}

Q {&,0,0p,0—p}
(blocks as N'B.A, accepts immediately as UC.A)

Input ’: gp

Part Il

Automata & Solvability

Church’s Solvability Problem

//E_ ™\ Input m Output
l\\ nv// Variables Variables
Church’s Solvability Problem — 1963

Given: an interface specification
(identification of input and output variables)
and a behavioural specification ¢

Sought: an implementation (/nput™ — Output), satisfying ¢

Q O

Y

Input

Automata & Games for Synthesis

Implementation Computation Tree

Q O Q O Q O Q O

Y o~ X

Automata-theoretic approach

Specification ¢ = ~ Automaton A,

Models of ¢ ~ Language of A,

Realisability of ¢~ Language Non-Emptiness of A,

Church’s Solvability Problem

- on the running example —

TN

\ /

~ 7

as before — AA won’t do

Church’s Solvability Problem

- on the running example —

TN

\ /

~ 7

as before — AA won’t do
how about N A7

Church’s Solvability Problem

- on the running example —

oo OpvO-p GBA
9 {0,$,0pVO-p,0Op,p}

9 {0,0,0pVO-p,0Op,—p}

© {0,$,0p VO —p,O-p,p}

Q {0,$,0p VO p,O—p,—p}

9 {0.<,p}

Q {0.O,-p}

Church’s Solvability Problem

- on the running example —
-7~
/ \ p 1]
e
\ /
~_~

O OpVvVO-p UCA
NBA for OO O-pAQPp
Q {C}

Q {&,0,0p,0—p}
(blocks as N'B.A, accepts immediately as UC.A)

Church’s Solvability Problem

— incomplete information —

IR Input Output
v_ _/ \Variables Variables

AA = UA | NA= DA (expensive)

i
AS

Input

Extension: Incomplete Information

Hidden -//E_\\- Input m Output
Variables |\\nv// Variables Variables

UA | NA = DA (expensive)

Extension: Incomplete Information

Hidden -//E_\\- Input m Output
Variables |\\n\/// Variables Variables

UA | NA = DA (expensive)
“narrowing operation” AA = AA UA = UA, NA A NA

o if diry and dirp are indistinguishable and
@ you'd send s; to dir; and s, to dir,

~» send s; and s, to dirys

knowledge information fork synthesis cliff hanger

Part IV

Distributed Strategies

Distributed Synthesis

— classic results —

Decidable Architectures
- i a [o

Pipelines [Pnueli4+-Rosner 90]

Two-Way Chains [Kupferman+Vardi 01]

77N
! B—E—8
N_7

One-Way Rings [Kupferman+Vardi 01]

Undecidable Architecture

)
b!/ \! [Pnueli+Rosner 90]

knowledge information fork synthesis cliff hanger

What does a Process Know?

7N
N4

@ process b2 knows its input

knowledge information fork synthesis cliff hanger

What does a Process Know?

7N
N4

@ process b2 knows its input

@ process b2 knows its output

knowledge information fork synthesis cliff hanger

What does a Process Know?

7N
N4

@ process b2 knows its input
@ process b2 knows its output

= process b2 knows the input to process b3

knowledge information fork synthesis cliff hanger

What does a Process Know?

7N
/

@ process b2 knows its input

@ process b2 knows its output

= process b2 knows the input to process b3
= process b2 knows the output of process b3

knowledge information fork synthesis cliff hanger

What does a Process Know?

7N
/

@ process b2 knows its input

@ process b2 knows its output

= process b2 knows the input to process b3

= process b2 knows the output of process b3
... least fixed point = knowledge of b2

knowledge information fork synthesis cliff hanger

Super-Processes

7N 2
N\ /

@ b2 is better informed than b3 and b4 (b2 = b3, b4)
@ b2 can simulate b3 and b4

= b2 can be used as a super-process

knowledge
Decidability of Architectures
— particularities —

> is an order

77N
N_7

—EB—B—E—a

processes incomparable by >

knowledge information fork synthesis cliff hanger

Information Fork

TN

SNa”

b2 ~ b5 > b3, b4

Undecidable

knowledge

information fork synthesis

Information Fork

TN
1 Env

4
N’

bl >~ b5 > b3, b4

Undecidable

cliff hanger

knowledge information fork synthesis cliff hanger

No Information Fork

Decidable

knowledge information fork synthesis cliff hanger

Decision Procedure

— ordered architecture —

@ A, accepts strategies for super-process

knowledge information fork synthesis cliff hanger

Decision Procedure

— ordered architecture —

@ A, accepts strategies for super-process
@ Automata transformation: A, — B
B, accepts a strategy for process b2 iff

o there is a strategy for process bl such that
@ their composition is accepted by A,

knowledge information fork synthesis cliff hanger

Decision Procedure

— ordered architecture —

@ A, accepts strategies for super-process

@ Automata transformation: A, — B
B, accepts a strategy for process b2 iff
o there is a strategy for process bl such that
@ their composition is accepted by A,

@ test non-emptiness of B,

knowledge information fork synthesis cliff hanger

Decision Procedure

— ordered architecture —

@ A, accepts strategies for super-process

@ Automata transformation: A, — B
B, accepts a strategy for process b2 iff

o there is a strategy for process bl such that
@ their composition is accepted by A,

@ test non-emptiness of B,

o A!, — accepts proper strategies for bl

knowledge information fork synthesis cliff hanger

Decision Procedure

— ordered architecture —

a
/TN o
="
___/

@ A, accepts strategies for super-process

@ Automata transformation: A, — B
B, accepts a strategy for process b2 iff

o there is a strategy for process bl such that
@ their composition is accepted by A,

@ test non-emptiness of B,
o A!, — accepts proper strategies for bl

@ test non-emptiness of A/,

knowledge information fork synthesis cliff hanger

Decision Procedure

— ordered architecture —

e L —
{ Env bl b2

N /

o LTL, UWA | UT A, DWA | DT A

knowledge information fork synthesis cliff hanger

Decision Procedure

— ordered architecture —

o LTL, UWA | UT A, DWA | DT A

@ projection (NT.A), narrowing (AT .A),
non-determinisation N'T"A

knowledge information fork synthesis cliff hanger

Decision Procedure

— ordered architecture —

o LTL, UWA | UTA, DWA | DT A
@ projection (NT.A), narrowing (AT .A),
non-determinisation N'T"A

¢ “annotate” strategy — UT A
¢ determinise — DT A
o project strategy — N'T A

knowledge information fork synthesis cliff hanger

Decision Procedure

— ordered architecture —

o LTL, UWA | UTA, DWA | DT A
@ projection (NT.A), narrowing (AT .A),
non-determinisation N'T"A

¢ “annotate” strategy — UT A
¢ determinise — DT A
o project strategy — N'T A

@ test non-emptiness of NT A - TS / DTA

knowledge information fork synthesis cliff hanger

Decision Procedure

— ordered architecture —

o LTL, UWA | UTA, DWA | DT A
@ projection (NT.A), narrowing (AT .A),
non-determinisation N'T"A

¢ “annotate” strategy — UT A
¢ determinise — DT A
o project strategy — N'T A

@ test non-emptiness of NT A - TS / DTA

@ intersect

knowledge information fork synthesis

Decision Procedure

— ordered architecture —

o LTL, UWA | UT A, DWA | DT A

@ projection (NT.A), narrowing (AT .A),
non-determinisation N'T"A

¢ “annotate” strategy — UT A
¢ determinise — DT A
o project strategy — N'T A

@ test non-emptiness of NT A - TS / DTA
@ intersect

@ test non-emptiness

cliff hanger

knowledge information fork synthesis cliff hanger

Decision Procedure

Architecture transformation > linear on black-box processes

@ merge equivalent processes

knowledge information fork synthesis cliff hanger

Decision Procedure

Architecture transformation > linear on black-box processes

@ merge equivalent processes

knowledge information fork synthesis cliff hanger

Decision Procedure

Architecture transformation > linear on black-box processes
@ merge equivalent processes

@ attach white-box processes to better informed process

knowledge information fork synthesis cliff hanger

Decision Procedure

b
¢, f d,f
//_\\ a e
I Env bl
oS b

b4

Architecture transformation > linear on black-box processes
@ merge equivalent processes
@ attach white-box processes to better informed process

@ remove feedback

knowledge information fork synthesis cliff hanger

Decision Procedure

b2,b5,w3

d,f
/
I Env b1l
\

b4

Ordered Architecture
@ decision procedure
@ adds one exponent / level of knowledge

@ hardness result

knowledge information fork synthesis

Perfect — But Something 's Wrong

Interfaces — friend or foe?
theory: restricted information can be abused

practice: then it is a specification error

cliff hanger

knowledge information fork synthesis cliff hanger

Perfect — But Something 's Wrong

Interfaces — friend or foe?
theory: restricted information can be abused

practice: then it is a specification error

Infeasible complexity non-elementary, undecidable
theory: completeness result

maximal size of minimal model

practice: no small model = specification error

knowledge information fork synthesis cliff hanger

Perfect — But Something 's Wrong

Interfaces — friend or foe?
theory: restricted information can be abused

practice: then it is a specification error

Infeasible complexity non-elementary, undecidable
theory: completeness result

maximal size of minimal model

practice: no small model = specification error

Redefine realisability
@ there is a feasible model

@ predefined bounds on the implementation

= Bounded Synthesis

bounded example safety emptiness game implementation completeness bounded synthesis

Part V

Two Steps Towards Practice

bounded example safety emptiness game implementation completeness bounded synthesis

Overview
Complete Information
Specification ¢

b

Universal Co-Buchi Automaton

[P}
hion2
s bounded

Deterministic Parameterised Deterministic

Parity Automaton Safety Automaton SMT IOblem
Parity Parameterised Safety _
Emptiness Game Emptiness Game SMT Solving
Distributed
Sequence of Automata Transformations Locality Constraints

Safra-Constructions — Exponential Small — Usually Cheap

bounded

Overview
Complete Information
Specification ¢

b

Universal Co-Buchi Automaton

[P}
hion2
s bounded

Deterministic Parameterised Deterministic

Parity Automaton Safety Automaton SMT]roblem
Parity Parameterised Safety _
Emptiness Game Emptiness Game SMT Solving
Distributed
Sequence of Automata Transformations Locality Constraints

Safra-Constructions — Exponential Small — Usually Cheap

bounded example safety emptiness game implementation completeness bounded synthesis

Overview
Complete Information
Specification ¢

b

Universal Co-Buchi Automaton

[P}
hion2
s bounded

Deterministic Parameterised Deterministic

Parity Automaton Safety Automaton SMT I"blem
Parity Parameterised Safety _
Emptiness Game Emptiness Game SMT Solving
Distributed
Sequence of Automata Transformations Locality Constraints

Safra-Constructions — Exponential Small — Usually Cheap

bounded example safety emptiness game implementation completeness

Example — Simplified Arbiter

"
o

|
1 2

Synthesis with Complete Information

Ve N
| env }
N /

f1,f2[pﬂ1 81,82
|

bounded synthesis

bounded example safety emptiness game implementation completeness bounded synthesis

From Co-Bluchi to Safety

X
o)
/ jgl&x
.
N N
81 &2
Realisable specification
@ finite implementation — size s

@ bound b on the number of rejecting states — b < s - |F|

@ safety condition

s can be bounded by the size of the resp. deterministic automaton

4

bounded example safety emptiness game implementation completeness bounded synthesis

Parameterised Emptiness Game

*
l//e;‘;\ Input - Output \@

\ /‘ ry, rn 81,82
n n

~

AN
w1
1

(0,0, .) (0,0,0) (0,.,0)
8182 8182
/ @\
(0,1,.) 0,.,1)
(0,1,1)

(0,1,0) (0,0,1)

bounded example safety emptiness game implementation

Parameterised Emptiness Game

*
-7~ \
/ v Input Output q
'\ env)T LR - 81,82 @
~=7 r r.
7 e

L

(0,1,.)

=(©

Semantics of a Game Positon
@ collects the paths of the run tree
@ /-th position in the annotation:

_: no path ends in automaton-state /
n € N: a path may end in automaton-state /
each such path has < n previous visits to rejecting states

completeness bounded synthesis

51((«)

bounded example safety emptiness game implementation completeness bounded synthesis

Parameterised Emptiness Game

*
l//e;‘;\ Input - Output \@

\ /‘ ry, rn 81,82
n n

~

AN
w1
1

(0,0, .) (0,0,0) (0,.,0)
8182 8182
/ @\
(0,1,.) 0,.,1)
(0,1,1)

(0,1,0) (0,0,1)

bounded example safety emptiness game implementation completeness bounded synthesis

Parameterised Emptiness Game

*
l//e;‘;\ Input - Output \@

81,82

)
\ / rn,nrn

—_———a

—_——a

bounded example safety emptiness game implementation completeness bounded synthesis

' Completeness

| (07 170;ﬁ7g13?) | | (07 170;r_1r27g1§) | | (07 170; rlaaglg) | | (0: 170; r1r2:g1§) |

(0,0, 1,77, 8182) | [(0,0, 1172, 75&2) | [(0,0, 1,17, 812) | [(0,0,1:rim2, 7ig2) |

Theorem — Completeness

An (input preserving) transition system is accepted by a UCB
< it has a valid annotation.

Proof idea

Cycle with rejecting state reachable in the run graph
< no valid annotation.

bounded example safety emptiness game implementation completeness bounded synthesis

Progress Constraints — Automaton Transitions

output complexity: NP-complete

@ Vi AJ(t) = AB(7,7,(£)) AN
A NS (i (8)) A AF (77 () > N (2) .
A X (7 () AN (7 (1) 2 AT (1) B B
A A]%(Trlrz(t)) A)\#(Tflﬁ(t)) >)‘#(t)
o Vt. A¥(t) — —gi(t) V g (t)
o V. AB(£) A ry(t) = A2 (77,7, (£)) A XY (13,7, (1)) > AP (2)
A X5 (77, (8)) A NS (77, (1)) 2 AT (1)
A X3 (7o, (£) AN (7, (£) > AT (1)
A)‘]}23(7—’1’2(1.)) A /\#(Tfﬂz(t)) Z)‘:fé(t)
o V. AB(t) A =gi(t) = Ao (1r,7, (1)) A XY (15,5, (1)) > A (1)
A N3 (77, (£)) A XY (77,1, (1)) > AE(2)
A /\]ZB(TﬁTz(t)) A /\#(Tﬂ?z(t)) >)‘?&(t)
A /\HZB(Tflfz(t)) A)‘?(Tﬁfz(t)) > /\#(t)

Explicit Synthesis
//E_ “\ Input m Output
—_—]
l\\ nv// Variables Variables

Church’s Solvability Problem — 1963

Given: an interface specification
(identification of input and output variables)
and a behavioural specification ¢

Sought: a circuit s.t. (Input® — Output) satisfies ¢

TS E¢

CTL: EXPTIME-complete, exponential transition system
LTL: 2EXPTIME-complete, doubly exponential TS

Explicit vs. Succinct

counter: /\ VO (pi +» YO pj) < /\Pj

1<i<n

explicit

transition system
Kripke structure

2™ states

J<i

A (pi » 30 pi) < N\ pj
J<i

succinct

circuit
program
online Turing machine

tape size n

Succinct Synthesis
min-output PSPACE-complete

TN

’ \ Input Output
v/ Variables Variables

~ =

Is there always a small oTM?

fand BpSPACE = EXPTIME
only if

CTL

Succinct Synthesis
min-output PSPACE-complete

P Input Output
\ 7 Variables Variables

~ =

Is there always a small oTM?

fand BpSPACE = EXPTIME
only if

CTL

Is there always a small & fast circuit?

if and
Jane. EXPTIME C P/poly

CTL

Succinct Synthesis
min-output PSPACE-complete

TS

’ \ Input Output
v/ Variables Variables

~ =

Is there always a small oTM? CTL
fand pSPACE = EXPTIME
only if
Is there always a small & fast circuit? CTL
if and
Jane. EXPTIME C P/poly

LTL: dito for intermediate automata

Succinct Synthesis

P

/" "\ Input Output
L Variables Variables

Is there always a small oTM? CTL
Tand pSPACE = EXPTIME
only if

only if: guess & verify EXPTIME-complete

Succinct Synthesis

P

/" "\ Input Output
S Variables Variables

Is there always a small oTM? CTL
Tand pSPACE = EXPTIME
only if
only if: guess & verify EXPTIME-complete

hence: PSPACE in the minimal succinct solution

Succinct Synthesis

P

A Input Output
S Variables Variables

Is there always a small oTM? CTL
Tand pSPACE = EXPTIME
only if
only if: guess & verify EXPTIME-complete

hence: PSPACE in the minimal succinct solution

if: much harder
uses the DSA from bounded synthesis

PSPACE=EXPTIME = Small Model

7 ~N

/ \
| énv
\ /

Input

Output
- 81,82

rn,nrn

~S_7

~

(0,0,-)

*

\

®

e

=(©

=7

(0,1,.)

(0,,0)

(0,-1)

(0,1,0)

(0,0,1)

L

(O

Succinct & Fast Synthesis

=

A Input Output
\ 7 Variables Variables

~_~

Is there always a small & fast circuit?

if and
only if EXPTIME C P/poly

CTL

if: as before

Succinct & Fast Synthesis

-

’ £ ™\ Input m Output
\ nY/ Variables Variables

~ =

Is there always a small & fast circuit?

if and
only if EXPTIME C P/poly

CTL

if: as before

only if: @ construction not enough

Succinct & Fast Synthesis

/N Input Output
v/ Variables Variables

Is there always a small & fast circuit? CTL
if and
only if EXPTIME C P/poly
if: as before

only if: @ construction not enough
encode universal space bounded ATM
environment provides initial tape
immediate answer to the halting problem

Implementations

General Search: Genetic Progamming & Co
@ @ Gal Katz, Doron Peled: MCGP: A Software Synthesis Tool

Based on Model Checking and Genetic Programming. ATVA
2010: 359-364

@ Gal Katz, Doron Peled: Code Mutation in Verification and
Automatic Code Correction. TACAS 2010: 435-450

@ Gal Katz, Doron Peled: Model Checking-Based Genetic
Programming with an Application to Mutual Exclusion.
TACAS 2008: 141-156

@ Colin G. Johnson: Genetic Programming with Fitness Based
on Model Checking. EuroGP 2007: 114-124

Sneak Preview

Search mutex leader election
Technique 2 shared bits | 3 shared bits 3 nodes 4 nodes
simulated execution time 20 23 84 145
annealing success rate 19 23 19 17
overall time 105.26 100 442.1 852.94
execution time 113 171 418 536
hybrid success rate 31 17 15 11
overall time 364.51 1,005.88 2,786.66 4,872.72
. execution time 583 615 1120 1311
genetic . success rate 7 7 3 3
Programming| ., erall time 8,328.57 8,785.71 | 37,333.33 | 43,700.00

pure bounded succinct summary

Part VII

summary

pure

pro:

pro:

con:

con:

bounded succinct summary

Automata Theoretic Approach

simple
@ narrowing
@ projection
@ determinisation (word)

clean
@ introduction of Partial Designs
@ characterisation of the class of decidable
architectures
@ uniform synthesis algorithm

Y

beyond price
does not benefit from small solutions

pure

bounded succinct summary

Bounded Synthesis

Bounded Synthesis
® guess implementation & verify

@ NP complete in minimal transition system & A,

pro: complexity closer to model checking

pro: applicable to distributed systems

con: transition system vs. program / circuit

pure bounded succinct summary

Succinct Synthesis

— is good news —

P

’ £ ™\ Input m Output
| —_—
=™, " Variables Variables

~_~

Is there always a small oTM? CTL
fand pSPACE = EXPTIME
only if
Is there always a small & fast circuit? CTL
if and
only if EXPTIME C P/poly

pure

bounded succinct summary

Synthesis vs. Model Checking

Bounded Synthesis of Succinct Systems
@ construct a correct program / circuit
@ PSPACE complete in minimal program / circuit & ¢

pro: complexity equal to model checking

pro: applicable to distributed systems

pure bounded succinct summary

Summary

@ Distributed Synthesis

@ decidability
@ complexity

@ Bounded Synthesis

o decidability
@ complexity

@ Succinct Synthesis

o decidability
e complexity

	But how? History and Simplicity of Synthesis
	Warm-Up: LTL – Automata & Simple Cases
	Automata & Solvability
	Distributed Strategies
	knowledge
	information fork
	synthesis
	cliff hanger

	Two Steps Towards Practice
	bounded
	example
	safety
	emptiness game
	implementation
	completeness
	bounded synthesis

	explicit vs. succinct
	summary
	pure
	bounded
	succinct
	summary

