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1 Description of the Model

In this test case, we considered an example taken from [5], which is shown in Figure 1.
Unlike the original example, we modeled the process as a Continuous Time Markov
Decision Process (CTMDP) instead of an Interactive Markov Chain (IMC). Former
interactive actions are transformed into tuples (r, a), where r is a rate and a is an
interactive action. These kind of actions are resolved by statically defining a set D =
×n

s=1Ds of decisions where Ds is a finite set of decisions that can be taken in state s ∈ S.
For each decision vector d, a rate Matrix Qd is defined. States s2,1, . . . , s2,30 represent

Figure 1: CTMDP with an Erlang(30,10)-Transition

an unfolded Erlang(30,10) transition, i.e. 30 consecutive Markovian transitions each of
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which has rate 10. In this test case, we are interested in checking whether:

1. state s4 is reached from state s1 within T time units with probability < x

2. state s4 is reached from state s1 in the interval [t0, T ] with probability < x.

First, we check the more concrete property corresponding to the CSL formula P<x(F [0,T ]s4)
and go on to the general case corresponding to P<x(F [t0,T ]s4). We consider a single
atomic proposition s4 which holds only in state s4.

We implemented our model checking algorithm [2] in an extension of the probabilistic
model checker MRMC [4]. In addition, we implemented a method to compute long-run
average state probabilities [3]. The implementation is written in C, using sparse matrices.
Parallelism is not exploited. All experiments are performed on an Intel Core 2 Duo P9600
with 2.66 GHz and 4 GB of RAM running on Linux.

2 Results

To compute the results for P<x(F [0,T ]s4), state s4 is made absorbing by removing the
transition from s4 to s1 (shown as a dashed line in the figure), as discussed in Subsection
4.3 in [2]. Table 1 contains the results and efforts to compute the maximal reachabil-
ity probabilities for T = 4 and 7 with the adaptive and non-adaptive variant of the
uniformization approach. The time usage is given in seconds. It can be seen that the
adaptive version is much more efficient and should be the method of choice in this ex-
ample. The value of ε that is required to prove P<x(F [0,T ]s4) depends on x. E.g., if
T = 4 and x = 0.672, ε = 10−4 is sufficient whereas ε = 10−3 would not allow one to
prove or disprove the property. Columns “lower” and “upper” represent the bounds of
the optimal policy. Our algorithm (Algorithm 2 in [2]) relies on these given bounds
although it would be possible to start with an exactly known probability vector.

To compute the result for P<x(F [t0,T ]s4), the two step approach is used. We consider
the Interval [3, 7]. Thus, in a first step the optimal gain vector at time 3, a[3,7] is
computed from the CTMDP where s4 is made absorbing. Then, the resulting upper
and lower bounds, g3 and g

3
, of the optimal policy are used as terminal conditions

to compute upper and lower bounds of the optimal policy at time 0 from the original
process including the transition between s4 and s1. Apart from the final error bound ε
for the spread between g

0
and g0, an additional error bound ε1 (< ε) has to be defined

which defines the spread between g
3

and g3.
Table 2 includes some results for different values of ε and ε1. The columns headed

with iteri (i = 1, 2) contain the number of iterations of the i-th phase. It can be seen that
for this example, the first phase requires more effort such that ε1 should be chosen only
slightly smaller than ε to reduce the overall number of iterations. Note that, in this case,
it is important to take time-dependent policies to arrive at truly maximal reachability
probabilites. The maximal value obtainable for time-abstract policies (using a recent
algorithm for CTMDPs [1, 4]) is 0.584284 (versus 0.6717787) for a time bound of 4.0,
and 0.9784889 (versus 0.9828449) for a time bound of 7.0.
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T ε
Uniformization K = 5

lower upper steps iter time (s)

4.0 10−3 0.671006 0.672001 143 715 0.01
4.0 10−4 0.671701 0.671801 720 3600 0.03
4.0 10−5 0.671771 0.671781 5921 29605 0.10
4.0 10−6 0.671778 0.671779 56361 281805 0.87
7.0 10−3 0.981858 0.982855 268 1340 0.02
7.0 10−4 0.982746 0.982846 1283 6415 0.04
7.0 10−5 0.982835 0.982845 10350 51750 0.22
7.0 10−6 0.982844 0.982845 97268 486340 1.64

T ε
Uniformization Kmax=20, ω = 0.1

lower upper steps iter time (s)

4.0 10−3 0.671083 0.672022 29 201 0.01
4.0 10−4 0.671772 0.671803 211 774 0.02
4.0 10−5 0.671778 0.671781 2002 5038 0.09
4.0 10−6 0.671778 0.671779 19473 401031 0.63
7.0 10−3 0.982753 0.982852 50 341 0.02
7.0 10−4 0.982836 0.982846 364 1333 0.04
7.0 10−5 0.982844 0.982845 3463 8098 0.19
7.0 10−6 0.982845 0.982845 33747 68876 1.50

Table 1: Bounds for Reaching s4 in [0, T ], i.e. Pmax
s1 (F [0,T ]s4)

ε1
ε = 1.0E-03

time bounded prob. iter1 iter2
9.0E-4 0.97170 0.97186 207 90
5.0E-4 0.97172 0.97186 270 89
1.0E-4 0.97175 0.97185 774 88
1.0E-5 0.07175 0.97185 5038 88

ε1
ε = 6.0E-04

time bounded prob. iter1 iter2
9.0E-4 - - - -
5.0E-4 0.97176 0.97185 270 93
1.0E-4 0.97178 0.97185 774 91
1.0E-5 0.97179 0.97185 5038 91

Table 2: Bounds for Reaching s4 in [3, 7], i.e. Pmax
s1 (F [3,7]s4)
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