
Mastermind (SPIN 2011)

AVACS S3
Phase 2

July 28, 2011

1 Description of the Benchmark

In the game of Mastermind [1] one player, the guesser, tries to find out a code, generated
by the other player, the encoder. The code consists of a number of tokens of fixed
positions, where for each token one color (or other labelling) out of a prespecified set is
chosen. Colors can appear multiple times. Each round, the guesser guesses a code. This
code is compared to the correct one by the encoder who informs the guesser on

1. how many tokens were of the correct color and at the correct place and

2. how many tokens were not at the correct place, but have a corresponding token of
the same color in the code.

Notice that the decisions of the encoder during the game are deterministic, while the
guesser has the choice between all valid codes. We assume that the encoder chooses the
code probabilistically with a uniform distribution over all options. The guesser’s goal is
to find the code as fast as possible and ours is to compute the maximal probability for
this to happen within t rounds.

2 Formalization of the Game

We formalize the game as follows: we let n be the number of tokens of the code and m
the number of colors. This means there are mn possible codes. Let O denote the set of
all possible codes. We now informally describe the I/O-IPCs which represent the game.
The guesses are described by actions {g0 | o ∈ O}, whereas the answers are described
by actions {a(x,y) | x, y ∈ [0, n]}.

The guesser repeats the following steps: From the initial state, sG, it first takes
a probabilistic step to state s′G and afterwards the guesser returns to the initial state
via one of mn transitions, each labelled with an output action g0!. In both states the
guesser receives answers a(x,y)? from the encoder and for all answers the guesser simply
remains in the same state, except for the answer a(n,n)? which signals that the guesser
has guessed correctly. When the guesser receives this action it moves to the absorbing
state s′′G.

1



Settings PMC PARAM NLP
n m t #S #T #V Time (s) Mem (MB) #V Time (s) Pr

2 2 2 197 248 36 0.0492 1.43 17 0.0973 0.750
2 2 3 629 788 148 0.1300 2.68 73 0.6530 1.000
3 2 2 1545 2000 248 0.2760 5.29 93 1.5100 0.625
3 2 3 10953 14152 2536 39.8000 235.00 879 1.4330 1.000
2 3 2 2197 2853 279 0.5090 6.14 100 2.1500 0.556

Table 1: Results of Mastermind Case Study

The encoder E is somewhat more complex. It starts by picking a code probabilisti-
cally, where each code has the same probability 1

mn . Afterwards the encoder repeats the
following steps indefinitely. First it receives a guess from the guesser, then it replies with
the appropriate answer and then it takes a probabilistic transition. This probabilistic
step synchronizes with the probabilistic step of the guesser, which allows us to record
the number of rounds the guesser needs to find the code.

The Mastermind game is the composition C := G ‖ E of the two basic I/O-IPCs.
We can now reason about the maximal probability P (F≤ts′′G) to break the code within a
prespecified number t of guesses. We consider here the set of all distributed schedulers as
we obviously want that the guesser uses only local information to make its guesses. If we
were to consider the set of all schedulers, the maximum probability would be 1 for any
time-bound as the guesser would immediately choose the correct code with probability
1. If only two components are considered, every distributed scheduler is also strongly
distributed. Therefore we omit the analysis under strongly distributed schedulers for
this case study.

3 Results

Results are given in Table 1. In addition to the model parameters (n,m), the time bound
(t) and the result (Pr) we provide statistics for the various phases of the algorithm.
For the unfolded parametric Markov chain (PMC) we give the number of states (#S),
transitions (#T ) and variables (#V ). For PARAM [2], we give the time needed to
compute the polynomial, the memory required and the number of variables that remain
in the resulting polynomial. Finally we give the time needed for Matlab to optimize
the polynomial we obtained, under the linear constraints that all scheduler decisions lie
between 0 and 1. For this case study we generated PMC models and linear constraints
semi-automatically, given the parameters n, m and t.

References

[1] Leslie H. Ault. Das Mastermind-Handbuch. Ravensburger Buchverlag, 1982.

2



[2] Georgel Calin, Pepijn Crouzen, Pedro R. D’Argenio, Ernst Moritz Hahn, and Lijun
Zhang. Time-Bounded Reachability in Distributed Input/Output Interactive Prob-
abilistic Chains. In SPIN, pages 193–211, 2010.

3


	Description of the Benchmark
	Formalization of the Game
	Results
	References

