# Protein Synthesis

### AVACS S3 Phase 2

#### July 28, 2011

### 1 Description of the Benchmark

We analyze in this test case a stochastic Petri net (SPN) model of protein synthesis [1] as depicted in Figure 1. In biological cells, each protein is encoded by a certain gene.



Figure 1: SPN of the synthesis model

If the gene is active, the corresponding protein will be synthesized. Also, proteins may degenerate and thus disappear after a time. Activation and deactivation of genes, protein synthesis (in case of active gene) as well as protein degeneration are modeled by stochastic rates. In the model, place  $p_1$  corresponds to an inactive gene encoding the protein,  $p_2$  corresponds to an active gene and  $p_3$  gives the numbers of existing proteins. The transition  $t_1$  deactivates the gene with rate  $\mu$ , while  $t_2$  activates it with rate  $\lambda$ . If the gene is active,  $t_3$  can produce new proteins with rate  $\nu$ . Each individual protein degenerates with rate  $\delta$ , which is modeled by the transition  $t_4$ . We consider the property that, within time t but later than 10 time units, a state is reached in which 20 or more proteins exist and the gene is inactive. The following formula formalizes this property:  $P_{=?}(F^{[10,t]}p_3 \geq 20 \land inactive)$  where *inactive* is an atomic proposition representing inactive genes.

| t    | Uniform                |            |       | Layered                |             |       | FSP                    |            |    |
|------|------------------------|------------|-------|------------------------|-------------|-------|------------------------|------------|----|
|      | $\operatorname{depth}$ | time $(s)$ | n     | $\operatorname{depth}$ | time $(s)$  | n     | $\operatorname{depth}$ | time $(s)$ | n  |
| 300  | 2300                   | 0.9/2.0    | 4659  | 2047                   | 0.9/ 1.7    | 4093  | 34                     | 1.0/0.0    | 67 |
| 500  | 3636                   | 0.9/ 7.8   | 7271  | 3308                   | 1.0/ $6.4$  | 6615  | 35                     | 1.0/0.0    | 69 |
| 1000 | 6830                   | 0.9/ 74.5  | 13659 | 6420                   | 1.4/ $68.0$ | 12839 | 36                     | 1.2/0.0    | 71 |
| 2000 | 13103                  | 1.0/567.0  | 26205 | 12577                  | 2.7/502.2   | 25153 | 37                     | 1.4/0.0    | 73 |

Table 1: Comparison of Uniform-, Layered- and FSP-configuration

#### 2 Results

We implemented this model in a *PRISM* [3]-like language and applied *INFAMY* [2]. Our implementation was tested with three different configurations and fixed parameters  $\lambda = 1, \mu = 5, \nu = 1$  and  $\delta = 0.02$ . Here, for the computation of the truncation point we used a precision of  $10^{-6}$ . A comparison of all configurations for this test case is given in Table 1. The probability of our property for various t is given in Table 2. All results were obtained on a Linux machine with an AMD Athlon XP 2600+ processor at 2 GHz equipped with 2 GB of RAM.

In this case study, the sum of the outgoing rates of a state mainly depends on  $p_3 \cdot \delta$ . Thus the model is rate-unbounded. On newly explored states where  $p_3$  is higher, the uniformization rate could also be increased. Thus, only time bounds  $t \leq 45$  can be handled of the initial approach [4]. Since in the Uniform and Layered chain configurations only forward exit rates are considered, very large time bounds can now be handled. Remarkably, the depth grows very slowly with respect to time if FSP is used. Even though global rates are unbounded, this is of no consequence since most of the rates lead back to states at lower depth. This also means that the probability of going out is very small. Both Uniform and Layered chain configuration do not exploit this. Thus, the resulting truncation depth is significantly higher.

| t    | prob.    |  |  |  |
|------|----------|--|--|--|
| 300  | 2.07E-02 |  |  |  |
| 500  | 4.39E-02 |  |  |  |
| 1000 | 9.99E-02 |  |  |  |
| 2000 | 2.02E-01 |  |  |  |

Table 2: Computed probabilities for  $P_{=?}(F^{[10,t]}p_3 \ge 20 \land inactive)$ 

## References

- Peter J. E. Gross and Jean Peccoud. Quantitative modeling of stochastic systems in molecular biology by using stochastic Petri nets. *Proc. Natl. Acad. Sci.*, 95:6750– 6755, 1998.
- [2] H. Hermanns, E. M. Hahn, B. Wachter, and L. Zhang. Time-Bounded Model Checking of Infinite-State Continuous-Time Markov Chains. *Fundamenta Informaticae*, 95:129–155, 2009.
- [3] M. Kwiatkowska, G. Norman, and D. Parker. PRISM: Probabilistic Model Checking for Performance and Reliability Analysis. ACM SIGMETRICS Performance Evaluation Review, 36(4):40–45, 2009.
- [4] Lijun Zhang, Holger Hermanns, E. Moritz Hahn, and Björn Wachter. Time-bounded model checking of infinite-state continuous-time Markov chains. In ACSD, pages 98–107. IEEE, 2008.