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1 Description of the Model

This case study is analog to the one described in [2]. We considered a system consisting
of a fixed number of m processors and an infinite queue for storing job requests. The
processing speed of a processor is described by the rate γ, while λ describes the incoming
rate of new jobs. If a new job arrives while at least one processor is idle, the job will
be processed directly. Otherwise, it will be put into a waiting queue. If there are idle
processors and the waiting queue is non-empty, a job will be taken from the queue and
processed immediately. To model this spontaneous transition, a rate µ � λ is used.
The stochastic Petri net (SPN) used in [2] is depicted in Figure 1 for m = 3. Tokens in

Figure 1: Stochastic Petri Net of the model for m = 3

place p1 represent the number of idle processors, place p2 describes the number of busy
processors and place p3 gives the number of jobs in the queue. Transition t1 models the
case of an incoming job given that at least one processor is idle, whereas t4 describes the
case in which all processors are busy, thus the job is put into the queue. Transition t2
represents the successful termination of a job. Finally, t3 is the spontaneous transition in
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λ
Uniform Layered FSP exponential
depth time (s) n depth time (s) n depth time (s) n

40 609 0.9/1.2 2434 533 0.9/1.1 2130 512 2.8/1.3 2046
60 846 0.9/1.6 3382 754 0.9/1.5 3014 1024 4.9/2.1 4094
80 1077 0.9/2.1 4306 971 0.9/1.9 3882 1024 4.9/2.0 4094

100 1305 0.9/2.5 5218 1187 0.9/2.4 4746 2048 9.3/4.0 8190

Table 1: Comparison of three different configurations

case there are idle processors and the queue is non-empty. We consider the probability
that, given that all processors are busy and there are no jobs in the queue, within t time
units a state will be reached in which all processors are idle and the queue is empty. We
can compute the probability by setting p1 = 0, p2 = 3, p3 = 0 as the initial state and
checking the formula P=?(F

≤tp1 = 3 ∧ p3 = 0).

2 Results

We implemented this model in INFAMY [1] and tested it with three different configura-
tions, various λ but fixed µ = 1000,m = 3, t = 10. The precision used in the truncation
computation was 10−6. The probabilites of the property is given in Table 2 and Ta-
ble 1 compares the three different configurations. All results were obtained on a Linux
machine with an AMD Athlon XP 2600+ processor at 2 GHz equipped with 2 GB of
RAM.

The uniformization rate of the underlying CTMC is 1000+λ. With the increase of λ,
the depth grows approximately linearly. Thus, the performance of the FSP configuration
suffers from the high cost of repeated transient analysis and, therefore, does not termi-
nate within two hours. As observed by Munsky [3] this problem can be alleviated by
adding more than one layer at each step. We consider a variant in which we double the
number of layers we add per step, thus computing an error estimate every 1, 2, 4, 8, . . .
layers. We call this configuration FSP exponential. In contrary to FSP, FSP exponen-
tial configuration works reasonable. It is however not competitive with the Uniform or
Layered configuration in time and memory.

λ prob.

40 4.22E-04
60 1.25E-04
80 5.27E-05

100 2.70E-05

Table 2: Computed probabilites for P=?(F
≤10p1 = 3 ∧ p3 = 0)
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