
Randomised Consensus Protocol (NFM 2011)

AVACS S3
Phase 2

July 28, 2011

1 Description of the Benchmark

In this case study we applied PARAM 2.0α [2] on a randomised shared coin protocol by
Aspnes and Herlihy [1], based on an existing PRISM model [3]. The setting consists of
N processes sharing a counter c, which initially has the value 0. In addition, a value K
is fixed for the protocol. Each process i decides to either decrement the counter with
probability pi or to increment it with probability 1 − pi. In contrast to the original
model, we do not fix the pi to 1

2 , but use them as parameters. After writing the counter,
the process reads the value again and checks whether c ≤ −K ·N or c ≥ K ·N . In the
first case, the process votes 1, in the second it votes 2. In both cases, the process stops
afterwards. If neither of the two cases hold, the process continues its execution. As all
processes which have not yet voted try to access the counter at the same time, there is
a nondeterministic choice on the access order.

Based on this setting, we asked for two properties. First, we were interested in
solving a probabilistic formula. We asked whether for each execution of the protocol the
probability that all processes finally terminate with a vote of 2 is at least K−1

2·K . With
appropriate atomic propositions finished and allCoinsEqualTwo, this property can be
expressed as P≥K−1

2·K
(true ∪ (finished ∧ allCoinsEqualTwo)).

Second, we examined a reward formula and asked whether the expected number of steps
until all processes have voted is above 25, expressed as R>25(F finished).

2 Results

2.1 Probabilistic Formula

The results of PARAM for the formula P≥K−1
2·K

(true ∪ (finished ∧ allCoinsEqualTwo))
with parameters N = 2 and K = 2 is given in Figure 1.

The leftmost part of the figure provides the minimal probabilites among all schedulers
that all processes terminate with a vote of 2, depending on the parameters pi. With
decreasing pi, the probability that all processes vote 2 increases, since it becomes more
likely that a process increases the counter. Thus, also the chance that finally c ≥ K×N

1



0.2

0.2
0

0.5

1

0.8

p2
p1 p1

p2

0.2 0.8

0.2

p1

p2

0.2 0.8

0.2

1

2
1

2

2

1

1
2

2
1

2
1

2
1

Figure 1: Results for the probabilistic formula with parameters N = 2 and K = 2

holds. The plot is symmetric, because both processes are independent and have an
identical structure.

On the right part of the figure, we give an overview which schedulers are optimal
for which parameter values. Here, boxes labelled with the same number share the same
minimising scheduler. To obtain the minimal probability in case p1 < p2, the nondeter-
minism must be resolved such that the first process is activated if it has not yet voted.
Doing so maximises the probability that we have c ≤ −K · N before c ≥ K · N , and
in turn minimises the probability that both processes vote 2. For p1 > p2, the second
process must be preferred.

In the middle part of the figure, we give the truth values of the formula. Cyan boxes
correspond to regions where the property holds whereas red boxes depict regions where
it does not hold. In white areas, the truth values is undecided. To keep the those areas
viewable, we chose a rather high tolerance of 0.15. However, the property indeed holds in
white areas enclosed by cyan areas and does not hold in white areas enclosed by red areas.
The reason that these areas remain undecided is that the minimising scheduler changes
at the diagonals, as discussed in the previous paragraph. If the optimal scheduler in a
box is not constant for the region considered, we have to split it. Because the optimal
scheduler always changes at the diagonals, some white boxes always remain.

2.2 Reward Formula

The results for the analysis of the formula R>25(F finished) are depicted in Figure 2.
The leftmost part of the figure provides the expected number of steps for probabilities
p1 and p2. The highest value is at pi = 1

2 . Intuitively, in this case the counter does not
have a tendency of drifting to either side and is likely to stay near 0 for a longer time.
Again, white boxes surrounded by boxes of the same colour are those regions in which
the minimising scheduler is constant. We see from the right part of the figure that this
happens along four axes. For some values of the parameters, the minimising scheduler
is not necessarily the one which always prioritises one of the processes. Instead, it may
be necessary to schedule the first process, then the second again, etc. As we can see
in the right part of Figure 2, this leads to a number of eight different schedulers to be
considered for the considered variable ranges.

2



0.2

0.2
20

40

0.8

p2
p1 p1

p2

0.2 0.8

0.2

p1

p2

0.2 0.8

0.2

1

2

3

4

53

6

3

4

2

3

1

1

1

27

4

2

4

8

66

6

3

5

5

7

8

5

8

8

7 4

7

6
3

51

5

2

5
5

2

4

6

2

66

1
1

2

1

7
4

3

4

2

2

2

3

1

1
3

4

Figure 2: Results for the reward formula

2.3 Runtime

The runtime of our tool was measured on an Intel Core 2 Duo P9600 with 2.66 GHz
running on Linux for both of the previously explained formulae. Thus, we considered two
processes and different constants K. The results are given in Table 1. Column “States”

K States
Until Reward
min truth min truth

2 272 4.7 22.8 278.8 944.7
3 400 13.7 56.7 4610.1 -
4 528 31.7 116.1 - -
5 656 65.5 215.2 - -
6 784 123.4 374.6 - -
7 912 272.6 657.4 - -

Table 1: Performance Statistics for the randomised consensus protocol

contains the number of states. The columns labelled with “Until” contain results of the
first property while those labelled with “Reward” contain those of the second. Columns
labelled with “min” contain just the time to compute the minimal values whereas those
labelled with “truth” also include the time to compare this value against the bound of
the formula. For all analyses, we chose a tolerance of ε = 0.05. The time is given in
seconds and “-” indicates that the analyses did not terminate within 90 minutes.

3



References

[1] James Aspnes and Maurice Herlihy. Fast randomized consensus using shared memory.
Journal of Algorithms, 11(3):441–461, 1990.

[2] Ernst Moritz Hahn, Tingting Han, and Lijun Zhang. Synthesis for PCTL in Para-
metric Markov Decision Processes. In NFM, LNCS. Springer, 2011.

[3] M. Kwiatkowska, G. Norman, and R. Segala. Automated verification of a randomized
distributed consensus protocol using Cadence SMV and PRISM. In CAV, volume
2102 of LNCS, pages 194–206. Springer, 2001.

4


	Description of the Benchmark
	Results
	Probabilistic Formula
	Reward Formula
	Runtime

	References

