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1 Description of the Model

This case study is related to our CAV paper [4]. We consider a model of a water level
control system using wireless sensors. This model is an extension of the one described
in [1]. Values submitted are thus subject to probabilistic delays, due to the unreliable
transport medium. A sketch of the model is given in Figure 1. The water level y of a

Figure 1: CTMDP of the Water Level Control System

tank is controlled by a monitor. Its change is specified by a linear function. Initially, the
water level is y = 1. When no pump is turned on (s0), the tank is filled by a constant
stream of water (ẏ). When a water level of y = 10 or above is seen by a sensor of the
tank, the pump should be turned on. However, the pump features a certain delay, which
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results from submitting control data via a wireless network. With a probability of 0.95
this delay takes 2 time unites (s1), but with a probability of 0.05 it takes 3 time units
(s′1). The delay is realized by the timer x. After the delay has passed, the water is
pumped out with a higher speed than it is filled into the tank (ẏ = −2 in s2). Another
sensor perceives whether the water level is below 5 and turns the pump off again. Again,
we have a distribution over delays here (s3 and s′3). For the system to work correctly,
the water level must stay between a value of 1 and 12.

We are interested in the probability that the pump system violates the property
given above, that is either the water level falls below 1 or grows above 12, within a given
time bound T .

2 Results

We model the previously described system in ProHVer [2] and reason about this property:
performance statistics are given in Table 1. Without using partitioning, we were only
able to obtain exact values for time bounds up to 82. Notice that we did not use the
convex hull over-approximation [3] nor another over-approximation. For time bounds
larger than this value, we always obtained a probability limit of 1. To get tighter results,
we partitioned x by an interval of length 2. For time bounds below 83 we obtain the
exact value in both table parts, whereas for 83 we obtain a useful upper bound only
when using partitioning. A plot of probabilities for different time bounds is given in
Figure 2. The graph has a staircase form where wide steps alternate with narrow ones.
This form results, because each time the longer time bound was randomly chosen, the
tank will overflow or underflow respectively, if there is enough time left. The wide steps
corresponds to the chance of overflow in the tank, the narrow ones to the chance of
underflow.
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Time bound
No partitioning
Probability Build (s) Abstract states

40 0.185 0 69
82 0.370 0 283
83 1.000 1 288

120 1.000 1 537
500 1.000 38 3068

1000 1.000 169 6403

Time bound
Interval of length 2
Probability Build (s) Abstract states

40 0.185 1 150
82 0.370 2 623
83 0.401 2 640

120 0.512 4 1220
500 0.954 79 7158

1000 0.998 365 14977

Table 1: Results of ProHVer With/Without Partitioning
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Figure 2: Plot of Error Probabilities
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