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1 Description of the Model

We consider a model of a water level control system extended from the one of Alur et
al. [1] and our previous paper [4]. In particular, we use this case study to demonstrate
the influence which different abstractions of the same continuous stochastic command
have. The abstraction of a guarded command with a continuous probability distribution
into one with a discrete probability distribution is described in a recent publication [2].
A water tank is filled by a constant stream of water and is connected to a pump which
is used to avoid overflow of the tank. A control system operates the pump in order to
keep the water level within predefined bounds. The controller is connected to a sensor
measuring the level of water in the tank. A sketch of the model is given in Figure 1.
The state “Tank” models the tank and the pump, and w is the water level. Initially, the

Figure 1: Sketch of the Water Level Control Model

tank contains a given amount of water. Whenever the pump is turned off in state “Off”,
the tank fills with a constant rate due to the inflow. Conversely, more water is pumped
out than flows in when the pump is on.
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Time bound
Abstraction A Abstraction B
Prob. Build (s) States Prob. Build (s) States

20s 0.1987 3 999 0.0982 3 1306
30s 0.2830 6 2232 0.1433 8 2935
40s 0.3580 16 3951 0.1860 18 5212
50s 0.4250 34 6156 0.2264 42 8137
60s 0.4848 67 8847 0.2647 86 11710

Time bound
Abstraction C Abstraction D
Prob. Build (s) States Prob. Build (s) States

20s 0.1359 3 1306 0.0465 5 1920
30s 0.1870 8 2935 0.0693 15 4341
40s 0.2547 18 5212 0.0916 47 7734
50s 0.3024 43 8137 0.1134 108 12099
60s 0.3577 85 11710 0.1347 219 17436

Table 1: Water level control results. We round probabilities to four decimal places.
Abstractions used are A = w + {[−2, 2], (−∞, 1.9] ∪ [1, 9,∞)},
B = w + {[−2, 2], (−∞, 1.9], [1.9,∞)},
C = w + {[−2.7, 2.7], (−∞, 1.2), [1.2,∞)},
D = w + {−1.5, 1.5], [−1.5,−2], [1.5, 2], (−∞, 1.9), [1.9,∞)}

The controller is modelled by automaton “Controller”. In state“Wait”, the controller
waits for a certain amount of time. Upon the transition to “React”, the controller
measures the water level. To model the uncertainties in measurement, we set the variable
m to a normal distribution with expected value w (the actual water level) and standard
deviation 1. According to the measurement obtained, the controller switches the pump
off or on.

We are interested in the probability that within a given time bound, the water level
leaves the legal interval.

2 Results

In Table 1, we give upper bounds for this probability for different time bounds computed
by ProHVer 1 as well as the number of states in the abstraction computed by PHAVer [3]
and the time needed for the analysis. Notice, that the resulting probabilities may be
different than the ones in the paper for this model. The reason is that we manually

1http://depend.cs.uni-sb.de/tools/prohver
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inserted the precise values in the .graph files generated by the modified version of PHAVer
which serve as input for ProHVer. For the stochastic guarded command simulating the
measurement, we consider different abstractions by probabilistic guarded commands of
different precision, for which we give the abstraction functions in the table caption.
When we refine the abstraction A to a more precise B, the probability bound decreases.
If we introduce additional non-determinism as in abstraction C, probabilities increase
again. If we refine B again into D, we obtain even lower probability bounds. The
price to be paid for increasing precision, however, is in the number of abstract states
computed by PHAVer as well as a corresponding increase in the time needed to compute
the abstraction.

Manual analysis shows that in this case study, the over-approximation of the prob-
abilities only results from the abstraction of the stochastic guarded command into a
probabilistic guarded command and is not increased further by the state-space abstrac-
tion.
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