Workstation Cluster

AVACS S3 Phase 2

July 28, 2011

1 Description of the Model

In this test case, we consider the *dependability of a fault-tolerant workstation cluster* [5]. Notably, we consider a finite-state model leading to finite CTMCs. Taking into account different aspects of the model, we can consider it either as a Continuous-Time Markov Chain (CTMC) [5] or as a Continuous-Time Markov Decision Process (CTMDP) [7]. We can handle the CTMC version by our tool INFAMY [4] whereas the CTMDP version can be treated by our modified version of the probabilistic model checker MRMC [3,7]

Figure 1 depicts a sketch of the aforementioned dependable cluster of workstations. The cluster consists of two sub-clusters, which, in turn, contain N workstations connected via a central switch. The two switches are connected via a backbone. Each component of the system can break down (fail) and is then fixed by a single repair unit responsible for the entire system (not depicted in the figure). Hereby, the quality of

Figure 1: Dependable Cluster of Workstations

service (QoS) constraint *Minimum* requires at least k (k < N) workstations to be operational where $k = \lfloor \frac{3}{4} \cdot N \rfloor$. Workstations have to be connected via switches. If in each sub-cluster the number of operational workstations is smaller than k the backbone is required to be operational to provide the required service.

We say that our system provides *premium* service whenever at least N workstations are operational. These workstations have to be connected by each other via operational

switches. When the number of operational workstations in one sub-cluster is below N, premium quality can be ensured by an operational backbone under the condition that there are at least N operational workstations in total. We consider the following properties:

- 1. $P_1: P_{=?}(F^{[0,1]} \neg Minimum)$: The propability that the QoS drops below minimum quality within one time unit,
- 2. P_2 : The expected number of repairs by time point one. The corresponding *PRISM* property is $R_{=?}[C \leq T]$,
- 3. P_3 : The probability to reach non-premium service within time T: $P_{<x}(F^{[0,T]}\neg premium),$
- 4. P_4 : The steady-state probability of having non-premium service: $S_{\leq x}(\neg premium)$ and
- 5. P_5 : The steady-state probability of being in a state where the probability to reach non-premium service within time T is above $\frac{1}{2}:S_{\leq x}(\neg P_{<\frac{1}{2}}(F^{[0,T]}\neg premium)).$

Properties P_1 and P_2 are used for performance measures of *INFAMY* whereas the others are tested with our modified version of *MRMC*. In the remainder of this case study, results are presented for both tools.

2 Results for *INFAMY*

In order to compare our tool INFAMY [4] against a model checker which does not employ truncation, we use PRISM [6] in version 3.2, which was latest when handling this case study. All results were obtained on a Linux machine with an AMD Athlon XP 2600+ processor at 2 GHz equipped with 2 GB of RAM. A comparison of PRISM and two configurations of INFAMY, namely Layered-chain and FSP, for a various number of workstations is given in Table 1. The Uniform chain configuration is omitted, as it is always dominated by the Layered-chain configuration. PRISM implements three different engines: a sparse-matrix and two symbolic engines. We used the sparse-matrix engine as it was the fastest one.

The probability and the expected number of repairs respectively, are depicted in Table 2. Since the resulting probabilites are very small in some cases, we use a precision of 10^{-12} for the computation of the truncation point. The time columns "tm (s)" of Table 1 have the format $t_1/t_2/t_3$ where the first number t_1 denotes the time needed for model construction, t_2 represents the time to check property 1 and t_3 the time for property 2. While the number of states and transitions for *PRISM* increases dramatically with parameter *N*, *INFAMY* scales much better in both configurations. The reason is apparent from the column displaying the depth: the depth of the full model is approximately linear in *N*, while the depth needed is sub-linear in *N*. For $N \ge 2048$ and $N \ge 1024$ respectively, *PRISM* cannot model check these properties as it runs out of memory and

M	PRIS	М		Laye	red		FSP		
11	dep	tm (s)	n	dep	tm (s)	n	dep	tm (s)	n
512	1029	12/ $197/952$	9466K	105	2/5/5	193K	20	2/0/0	6K
1024	2053	48/1132/-	$37806 \mathrm{K}$	109	2/5/5	208K	26	3/0/0	11K
2048	-	-	-	116	2/6/6	236K	36	6/1/1	22K
4096	-	-	-	129	3/7/8	239K	53	19/1/1	48K

Table 1: Comparison of PRISM and INFAMY for different N

N	prob.	exp.
512	5.96E-08	0.72
1024	6.01E-08	1.08
2048	.07E-08	1.38
4096	6.11E-08	1.56

Table 2: Propabilities and Expected Number of Repairs for various N

crashes; this is denoted by "-". As N increases, the truncation depth grows only slowly in *INFAMY* and hence, only a small fraction of the state space needs to be explored in the truncation construction. Although the FSP configuration is not very efficient in terms of toal time, thereby spending the largest part of the running time in the first phase, it shows a lot of potential in terms of depth and number of states. In Table 3, we give additional performance measures for a model of N = 512 workstations for property 1 using larger time bounds. Results are given for *PRISM* (sparse engine), FSP and FSP exponential respectively. The state space explored by *PRISM* has depth 1029 and includes 9.4 million states. Up to t = 20, *INFAMY* with FSP is faster than *PRISM*. However, for larger time bounds, the model construction dominates, as for each layer exploration the error estimate is recomputed. The FSP variant with exponential layer explorations is suitable for this case and is consistently the fastest method for $t \leq 50$, as shown in the last column of Table 4.

3 Results for modified *MRMC*

Time bounded reachability analysis for CTMDPs was thus far restricted to time-abstract policies [7], using a dediated algorithm for uniform CTMDPs [1]. In a uniform CT-MDP (including the one studied here) rate sums are identical across states and non-deterministic choices, which can be exploited in the algorithm.

Results and statistics are reported in Table 5, 6 and 7. For P_1 , we also give numbers for time-abstract policy-based computation exploiting model uniformity [1]. We chose $\epsilon = 10^{-6}$ and $K_{max} = 70$. As we see, the probabilities obtained for P_1 using time-abstract and general policies agree up to ϵ , thus time-abstract policies seem sufficient to obtain maximal reachability probabilities for this model and property. Our

4	PRISM	FSP			FSP ex	ponential	
ι	time (s)	depth	time (s)	n	depth	time (s)	n
10.0	11.9/ 359.5	52	47.5/ 3.0	46K	64	6.8/ 4.7	71K
20.0	11.7/593.8	80	318.1/ 13.5	111K	128	44.4/ 35.6	289K
30.0	11.7/802.2	104	1016.9/ 32.5	$190 \mathrm{K}$	128	62.5/ 50.2	289K
50.0	11.7/1171.8	147	4660.4/103.7	382K	256	404.9/323.0	$1167 \mathrm{K}$

Table 3: Cluster Performance Statistics for Different Time Bounds

t	prob.
10.0	3.79E-06
20.0	1.01E-05
30.0	1.68E-05
50.0	3.04E-05

Table 4: Results of Property 1 for Different Time Bounds

runtime requirements are higher than what is needed for the time-abstract policy class, if exploiting uniformity [1]. Without uniformity exploitation [2], the time-abstract computations are worse by a factor of 100 to 100000 compared to our analysis (yielding the same probability result, not shown in the table). However, even for the largest models and time bounds considered, we were able to obtain precise results within reasonable time, which shows the practical applicability of the method. Long-run properties P_2 and nested variation P_3 can be handled in a similiar amount of time, compared to P_1 . In Appendix A we give a comparison of different versions of *MRMC* and *ETMCC*.

References

- C. Baier, H. Hermanns, J. P. Katoen, and B. R. Haverkort. Efficient computation of time-bounded reachability probabilities in uniform continuous-time Markov Decision Processes. *Theor. Comput. Sci.*, 345(1):2–26, 2005.
- [2] Tomás Brázdil, Vojtech Forejt, Jan Krcal, Jan Kretínský, and Antonín Kucera. Continuous-Time Stochastic Games with Time-Bounded Reachability. In *FSTTCS*, volume 4 of *LIPIcs*, pages 61–72, 2009.
- [3] Peter Buchholz, Ernst Moritz Hahn, Holger Hermanns, and Lijun Zhang. Model Checking Algorithms for CTMDPs. In CAV, 2011.
- [4] Ernst Moritz Hahn, Holger Hermanns, Björn Wachter, and Lijun Zhang. INFAMY: An Infinite-State Markov Model Checker. In CAV, pages 641–647, 2009.

Workst.	States		100h (tab)	100h (dep)	500h (tab)	500h (dep)
4	000	Time	0s	0s	0s	0s
4	808	Prob.	0.0921146	0.0921155	0.0921146	0.0921155
0	9770	Time	0s	0s	0s	0s
0	2770	Prob.	0.1772726	0.1772735	0.1772726	0.1772735
16	10190	Time	0s	0s	0s	1s
16	10130	Prob.	0.3243474	0.3243483	0.3243474	0.3243483
<u>C 1</u>	151050	Time	0s	4s	1s	19s
64	151058	Prob.	0.7324401	0.7324406	0.7324401	0.7324406

Workst.	States		1000h (tab)	1000h (dep)	5000h (tab)	5000h (dep)
1	808	Time	0s	0s	0s	1s
4	808	Prob.	0.0921146	0.0921155	0.0921146	0.0921155
0	9770	Time	0s	0s	0s	2s
0	2770	Prob.	0.1772726	0.1772735	0.1772726	0.1772735
16	10130	Time	0s	2s	1s	8s
10		Prob.	0.3243474	0.3243483	0.3243474	0.3243483
64	151050	Time	2s	37s	6s	3m 21s
	191098	Prob.	0.7324401	0.7324406	0.7324401	0.7324406

Table 5: Statistics for fault tolerant workstation analysis from the analysis of property P_1 . We give both number for the time-abstract algorithm (tab) as well as for the time-dependent algorithm (dep)

Workst.	States		
1	Time	110	0s
1	Prob.	110	0.0000213
0	Time	974	0s
2	Prob.	274	0.0000376
4	Time	010	0s
4	Prob.	818	0.0000770
0	Time	0770	0s
8	Prob.	2770	0.0001635
10	Time	10100	0s
10	Prob.	10130	0.0003483
00	Time	00074	2s
32	Prob.	38674	0.0007050
<u>C 1</u>	Time	151050	11s
04	Prob. 151058		0.0012808
100	Time	K07100	0s
128	Prob.	597100	0.0000000

- Table 6: Statistics for fault tolerant workstation analysis from the analysis of property P_2
- [5] Boudewijn R. Haverkort, Holger Hermanns, and Joost-Pieter Katoen. On the Use of Model Checking Techniques for Dependability Evaluation. In SRDS, pages 228–237, 2000.
- [6] Andrew Hinton, Marta Z. Kwiatkowska, Gethin Norman, and David Parker. PRISM: A Tool for Automatic Verification of Probabilistic Systems. In *TACAS*, volume 3920 of *Lecture Notes in Computer Science*, pages 441–444. Springer, 2006.
- [7] Joost-Pieter Katoen, Ivan S. Zapreev, Ernst Moritz Hahn, Holger Hermanns, and David N. Jansen. The Ins and Outs of the Probabilistic Model Checker MRMC. In *QEST*, pages 167–176, 2009.

A Appendix

In the tables below we give the results of our comparison of MRMC 1.2, 1.3, 1.4, 1.5 and its predecessor ETMCC. The specialised algorithm [1] for maximal reachability probabilities over time-abstract, history-dependent schedulers was used with precision of 1E-6. As we can see, there is a huge performance improvement when changing from ETMCCto MRMC, and another significant improvement when changing from the previous to the latest version of MRMC. Notice that in certain previous publications result tables were shifted by one line, which explains the large differences to the table here.

Workst.	States		100h (tab)	100h (dep)	500h (tab)	500h (dep)
4	000	Time	0s	0s	0s	0s
4	808	Prob.	0.0000770	0.0000770	0.0000770	0.0000770
0	9770	Time	0s	0s	0s	0s
0	2770	Prob.	0.0001635	0.0001635	0.0001635	0.0001635
16	10120	Time	0s	1s	0s	1s
10	10130	Prob.	0.0003483	0.0003483	0.0003483	0.0003483
64	151059	Time	12s	16s	13s	30s
	191098	Prob.	0.0018185	0.0018185	0.0018187	0.0018187

Workst.	States		1000h (tab)	1000h (dep)	5000h (tab)	5000h (dep)
4	808	Time	0s	0s	0s	1s
4	808	Prob.	0.0000770	0.0000770	0.0000770	0.0000770
0	9770	Time	0s	0s	0s	2s
0	2770	Prob.	0.0001635	0.0001635	0.0001635	0.0001635
16	10190	Time	0s	2s	1s	9s
10	10120	Prob.	0.0003483	0.0003483	0.0003526	0.0003526
64	151050	Time	13s	49s	11s	3m 23s
	191098	Prob.	0.0018460	0.0018460	1.0000000	1.0000000

Table 7: Statistics for fault tolerant workstation analysis from the analysis of property P_3 . We give both number for the time-abstract algorithm (tab) as well as for the time-dependent algorithm (dep)

Workst.	States		100h	500h	1000h	5000h
		Prob.	0.0008828	0.0044933	0.0089880	0.0442228
		ETMCC	0s	0s	0s	0s
1	110	1.2	0s	0s	0s	0s
1		1.3	0s	0s	0s	0s
		1.4	0s	0s	0s	0s
		1.5	0s	0s	0s	0s
		Prob.	0.0009394	0.0048464	0.0097087	0.0477613
		ETMCC	0s	0s	0s	0s
9	974	1.2	0s	0s	0s	0s
Z	214	1.3	0s	0s	0s	0s
		1.4	0s	0s	0s	0s
		1.5	0s	0s	0s	0s
		Prob.	0.0018491	0.0095426	0.0190762	0.0921146
		ETMCC	0s	0s	0s	0s
4	818	1.2	0s	0s	0s	0s
4		1.3	0s	0s	0s	0s
		1.4	0s	0s	0s	0s
		1.5	0s	0s	0s	0s
		Prob.	0.0037199	0.0191655	0.0381363	0.1772726
		ETMCC	0s	0s	0s	1s
0	9770	1.2	0s	0s	0s	1s
0	2110	1.3	0s	0s	0s	1s
		1.4	0s	0s	0s	0s
		1.5	0s	0s	0s	0s
		Prob.	0.0074551	0.0381323	0.0751490	0.3243474
		ETMCC	0s	0s	1s	2s
16	10130	1.2	0s	0s	1s	3s
10	10130	1.3	0s	0s	0s	2s
		1.4	0s	0s	0s	1s
		1.5	0s	0s	0s	0s
		Prob.	0.0143335	0.0720260	0.1394164	0.5291840
		ETMCC	1s	2s	3s	14s
20	38674	1.2	0s	1s	2s	9s
04	00074	1.3	0s	1s	2s	8s
		1.4	0s	0s	0s	2s
		1.5	0s	0s	0s	1s

Workst.	States		100h	500h	1000h	5000h
		Prob.	0.0251809	0.1228233	0.2312399	0.7324401
		ETMCC	3s	9s	14s	58s
64	151059	1.2	1s	5s	9s	40s
04	191099	1.3	1s	4s	7s	33s
		1.4	0s	1s	2s	8s
		1.5	0s	1s	1s	4s
		Prob.	0.0391070	0.1837937	0.3344111	0.8698468
		ETMCC	42s	$1 \mathrm{m} \ 7 \mathrm{s}$	1m 40s	5m 29s
199	507010	1.2	6s	21s	41s	3m~5s
128	597010	1.3	5s	18s	33s	2m $38s$
		1.4	2s	6s	11s	48s
		1.5	1s	4s	7s	31s

Workst.	States		10000h	30000h	50000h
		Prob.	0.0865099	0.2377584	0.3639644
		ETMCC	0s	0s	1s
1	110	1.2	0s	0s	0s
1	110	1.3	0s	0s	0s
		1.4	0s	0s	0s
		1.5	0s	0s	0s
		Prob.	0.0932774	0.2546009	0.3872219
		ETMCC	0s	1s	1s
0	974	1.2	0s	0s	1s
2	214	1.3	0s	0s	1s
		1.4	0s	0s	0s
		1.5	0s	0s	0s
		Prob.	0.1758129	0.4402362	0.6198248
		ETMCC	1s	2s	3s
4	Q1Q	1.2	0s	1s	2s
4	010	1.3	0s	1s	2s
		1.4	0s	0s	1s
		1.5	0s	0s	1s
		Prob.	0.3232411	0.6901539	0.8581406
		ETMCC	2s	6s	9s
0	9770	1.2	1s	4s	7s
0	2110	1.3	1s	4s	6s
		1.4	0s	1s	2s
		1.5	0s	1s	2s

Workst.	States		10000h	30000h	50000h
16	10130	Prob.	0.5436606	0.9050388	0.9802392
		ETMCC	5s	14s	23s
		1.2	5s	15s	24s
		1.3	4s	12s	21s
		1.4	1s	4s	6s
		1.5	1s	3s	4s
32	38674	Prob.	0.7784745	0.9891429	0.9994679
		ETMCC	26s	$1m \ 16s$	2m 7s
		1.2	18s	54s	$1m\ 27s$
		1.3	17s	48s	$1m \ 18s$
		1.4	4s	14s	23s
		1.5	3s	7s	12s
64	151058	Prob.	0.9284749	0.9996347	0.9999981
		ETMCC	1m~55s	5m 29s	$9m\ 11s$
		1.2	$1m\ 20s$	3m~53s	6m30s
		1.3	1m~5s	3m 4s	$5m \ 10s$
		1.4	16s	45s	$1m\ 16s$
		1.5	8s	25s	40s
128	597010	Prob.	0.9830755	0.9999952	1.0000000
		ETMCC	$10\mathrm{m}~18\mathrm{s}$	$30\mathrm{m}~10\mathrm{s}$	$58m\ 19s$
		1.2	6m 2s	$18m\ 26s$	30m~6s
		1.3	5m 8s	$15m\ 28s$	$24\mathrm{m}~15\mathrm{s}$
		1.4	1m $34s$	$4m \ 33s$	$7\mathrm{m}~27\mathrm{s}$
		1.5	57s	2m $42s$	$4m \ 30s$