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1 Description of the Model

In this test case, we consider the dependability of a fault-tolerant workstation cluster [5].
Notably, we consider a finite-state model leading to finite CTMCs. Taking into account
different aspects of the model, we can consider it either as a Continuous-Time Markov
Chain (CTMC) [5] or as a Continuous-Time Markov Decision Process (CTMDP) [7]. We
can handle the CTMC version by our tool INFAMY [4] whereas the CTMDP version
can be treated by our modified version of the probabilistic model checker MRMC [3,7]

Figure 1 depicts a sketch of the aforementioned dependable cluster of workstations.
The cluster consists of two sub-clusters, which, in turn, contain N workstations con-
nected via a central switch. The two switches are connected via a backbone. Each
component of the system can break down (fail) and is then fixed by a single repair unit
responsible for the entire system (not depicted in the figure). Hereby, the quality of

Figure 1: Dependable Cluster of Workstations

service (QoS) constraint Minimum requires at least k (k < N) workstations to be oper-
ational where k = b34 ·Nc. Workstations have to be connected via switches. If in each
sub-cluster the number of operational workstations is smaller than k the backbone is
required to be operational to provide the required service.

We say that our system provides premium service whenever at least N workstations
are operational. These workstations have to be connected by each other via operational
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switches. When the number of operational workstations in one sub-cluster is below
N , premium quality can be ensured by an operational backbone under the condition
that there are at least N operational workstations in total. We consider the following
properties:

1. P1 : P=?(F
[0,1]¬Minimum): The propability that the QoS drops below minimum

quality within one time unit,

2. P2 : The expected number of repairs by time point one. The corresponding PRISM
property is R=?[C ≤ T ],

3. P3 : The probability to reach non-premium service within time T :
P≤x(F [0,T ]¬premium),

4. P4 : The steady-state probability of having non-premium service: S≤x(¬premium)
and

5. P5 : The steady-state probability of being in a state where the probability to reach
non-premium service within time T is above 1

2 :S≤x(¬P< 1
2
(F [0,T ]¬premium)).

Properties P1 and P2 are used for performance measures of INFAMY whereas the others
are tested with our modified version of MRMC. In the remainder of this case study,
results are presented for both tools.

2 Results for INFAMY

In order to compare our tool INFAMY [4] against a model checker which does not
employ truncation, we use PRISM [6] in version 3.2, which was latest when handling
this case study. All results were obtained on a Linux machine with an AMD Athlon XP
2600+ processor at 2 GHz equipped with 2 GB of RAM. A comparison of PRISM and
two configurations of INFAMY, namely Layered-chain and FSP, for a various number
of workstations is given in Table 1. The Uniform chain configuration is omitted, as
it is always dominated by the Layered-chain configuration. PRISM implements three
different engines: a sparse-matrix and two symbolic engines. We used the sparse-matrix
engine as it was the fastest one.

The probability and the expected number of repairs respectively, are depicted in Ta-
ble 2. Since the resulting probabilites are very small in some cases, we use a precision of
10−12 for the computation of the truncation point. The time columns “tm (s)” of Table 1
have the format t1/t2/t3 where the first number t1 denotes the time needed for model
construction, t2 represents the time to check property 1 and t3 the time for property
2. While the number of states and transitions for PRISM increases dramatically with
parameter N , INFAMY scales much better in both configurations. The reason is appar-
ent from the column displaying the depth: the depth of the full model is approximately
linear in N , while the depth needed is sub-linear in N . For N ≥ 2048 and N ≥ 1024
respectively, PRISM cannot model check these properties as it runs out of memory and
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N
PRISM Layered FSP
dep tm (s) n dep tm (s) n dep tm (s) n

512 1029 12/ 197/952 9466K 105 2/5/5 193K 20 2/0/0 6K
1024 2053 48/1132/- 37806K 109 2/5/5 208K 26 3/0/0 11K
2048 - - - 116 2/6/6 236K 36 6/1/1 22K
4096 - - - 129 3/7/8 239K 53 19/1/1 48K

Table 1: Comparison of PRISM and INFAMY for different N

N prob. exp.

512 5.96E-08 0.72
1024 6.01E-08 1.08
2048 .07E-08 1.38
4096 6.11E-08 1.56

Table 2: Propabilities and Expected Number of Repairs for various N

crashes; this is denoted by “-”. As N increases, the truncation depth grows only slowly
in INFAMY and hence, only a small fraction of the state space needs to be explored
in the truncation construction. Although the FSP configuration is not very efficient in
terms of toal time, thereby spending the largest part of the running time in the first
phase, it shows a lot of potential in terms of depth and number of states. In Table 3, we
give additional performance measures for a model of N = 512 workstations for property
1 using larger time bounds. Results are given for PRISM (sparse engine), FSP and
FSP exponential respectively. The state space explored by PRISM has depth 1029 and
includes 9.4 million states. Up to t = 20, INFAMY with FSP is faster than PRISM.
However, for larger time bounds, the model construction dominates, as for each layer
exploration the error estimate is recomputed. The FSP variant with exponential layer
explorations is suitable for this case and is consistently the fastest method for t ≤ 50, as
shown in the last column of Table 4.

3 Results for modified MRMC

Time bounded reachability analysis for CTMDPs was thus far restricted to time-abstract
policies [7], using a dediated algorithm for uniform CTMDPs [1]. In a uniform CT-
MDP (including the one studied here) rate sums are identical across states and non-
deterministic choices, which can be exploited in the algorithm.

Results and statistics are reported in Table 5, 6 and 7. For P1, we also give num-
bers for time-abstract policy-based computation exploiting model uniformity [1]. We
chose ε = 10−6 and Kmax = 70. As we see, the probabilities obtained for P1 using
time-abstract and general policies agree up to ε, thus time-abstract policies seem suf-
ficient to obtain maximal reachability probabilities for this model and property. Our
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t
PRISM FSP FSP exponential

time (s) depth time (s) n depth time (s) n

10.0 11.9/ 359.5 52 47.5/ 3.0 46K 64 6.8/ 4.7 71K
20.0 11.7/ 593.8 80 318.1/ 13.5 111K 128 44.4/ 35.6 289K
30.0 11.7/ 802.2 104 1016.9/ 32.5 190K 128 62.5/ 50.2 289K
50.0 11.7/1171.8 147 4660.4/103.7 382K 256 404.9/323.0 1167K

Table 3: Cluster Performance Statistics for Different Time Bounds

t prob.

10.0 3.79E-06
20.0 1.01E-05
30.0 1.68E-05
50.0 3.04E-05

Table 4: Results of Property 1 for Different Time Bounds

runtime requirements are higher than what is needed for the time-abstract policy class,
if exploiting uniformity [1]. Without uniformity exploitation [2], the time-abstract com-
putations are worse by a factor of 100 to 100000 compared to our analysis (yielding the
same probability result, not shown in the table). However, even for the largest models
and time bounds considered, we were able to obtain precise results within reasonable
time, which shows the practical applicability of the method. Long-run properties P2 and
nested variation P3 can be handled in a similiar amount of time, compared to P1. In
Appendix A we give a comparison of different versions of MRMC and ETMCC.
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Workst. States 100h (tab) 100h (dep) 500h (tab) 500h (dep)

4 808
Time 0s 0s 0s 0s
Prob. 0.0921146 0.0921155 0.0921146 0.0921155

8 2770
Time 0s 0s 0s 0s
Prob. 0.1772726 0.1772735 0.1772726 0.1772735

16 10130
Time 0s 0s 0s 1s
Prob. 0.3243474 0.3243483 0.3243474 0.3243483

64 151058
Time 0s 4s 1s 19s
Prob. 0.7324401 0.7324406 0.7324401 0.7324406

Workst. States 1000h (tab) 1000h (dep) 5000h (tab) 5000h (dep)

4 808
Time 0s 0s 0s 1s
Prob. 0.0921146 0.0921155 0.0921146 0.0921155

8 2770
Time 0s 0s 0s 2s
Prob. 0.1772726 0.1772735 0.1772726 0.1772735

16 10130
Time 0s 2s 1s 8s
Prob. 0.3243474 0.3243483 0.3243474 0.3243483

64 151058
Time 2s 37s 6s 3m 21s
Prob. 0.7324401 0.7324406 0.7324401 0.7324406

Table 5: Statistics for fault tolerant workstation analysis from the analysis of property
P1. We give both number for the time-abstract algorithm (tab) as well as for
the time-dependent algorithm (dep)
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Workst. States

1
Time

110
0s

Prob. 0.0000213

2
Time

274
0s

Prob. 0.0000376

4
Time

818
0s

Prob. 0.0000770

8
Time

2770
0s

Prob. 0.0001635

16
Time

10130
0s

Prob. 0.0003483

32
Time

38674
2s

Prob. 0.0007050

64
Time

151058
11s

Prob. 0.0012808

128
Time

597100
0s

Prob. 0.0000000

Table 6: Statistics for fault tolerant workstation analysis from the analysis of property
P2
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A Appendix

In the tables below we give the results of our comparison of MRMC 1.2, 1.3, 1.4, 1.5 and
its predecessor ETMCC. The specialised algorithm [1] for maximal reachability proba-
bilities over time-abstract, history-dependent schedulers was used with precision of 1E-6.
As we can see, there is a huge performance improvement when changing from ETMCC
to MRMC, and another significant improvement when changing from the previous to the
latest version of MRMC. Notice that in certain previous publications result tables were
shifted by one line, which explains the large differences to the table here.
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Workst. States 100h (tab) 100h (dep) 500h (tab) 500h (dep)

4 808
Time 0s 0s 0s 0s
Prob. 0.0000770 0.0000770 0.0000770 0.0000770

8 2770
Time 0s 0s 0s 0s
Prob. 0.0001635 0.0001635 0.0001635 0.0001635

16 10130
Time 0s 1s 0s 1s
Prob. 0.0003483 0.0003483 0.0003483 0.0003483

64 151058
Time 12s 16s 13s 30s
Prob. 0.0018185 0.0018185 0.0018187 0.0018187

Workst. States 1000h (tab) 1000h (dep) 5000h (tab) 5000h (dep)

4 808
Time 0s 0s 0s 1s
Prob. 0.0000770 0.0000770 0.0000770 0.0000770

8 2770
Time 0s 0s 0s 2s
Prob. 0.0001635 0.0001635 0.0001635 0.0001635

16 10130
Time 0s 2s 1s 9s
Prob. 0.0003483 0.0003483 0.0003526 0.0003526

64 151058
Time 13s 49s 11s 3m 23s
Prob. 0.0018460 0.0018460 1.0000000 1.0000000

Table 7: Statistics for fault tolerant workstation analysis from the analysis of property
P3. We give both number for the time-abstract algorithm (tab) as well as for
the time-dependent algorithm (dep)
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Workst. States 100h 500h 1000h 5000h

1 110

Prob. 0.0008828 0.0044933 0.0089880 0.0442228
ETMCC 0s 0s 0s 0s

1.2 0s 0s 0s 0s
1.3 0s 0s 0s 0s
1.4 0s 0s 0s 0s
1.5 0s 0s 0s 0s

2 274

Prob. 0.0009394 0.0048464 0.0097087 0.0477613
ETMCC 0s 0s 0s 0s

1.2 0s 0s 0s 0s
1.3 0s 0s 0s 0s
1.4 0s 0s 0s 0s
1.5 0s 0s 0s 0s

4 818

Prob. 0.0018491 0.0095426 0.0190762 0.0921146
ETMCC 0s 0s 0s 0s

1.2 0s 0s 0s 0s
1.3 0s 0s 0s 0s
1.4 0s 0s 0s 0s
1.5 0s 0s 0s 0s

8 2770

Prob. 0.0037199 0.0191655 0.0381363 0.1772726
ETMCC 0s 0s 0s 1s

1.2 0s 0s 0s 1s
1.3 0s 0s 0s 1s
1.4 0s 0s 0s 0s
1.5 0s 0s 0s 0s

16 10130

Prob. 0.0074551 0.0381323 0.0751490 0.3243474
ETMCC 0s 0s 1s 2s

1.2 0s 0s 1s 3s
1.3 0s 0s 0s 2s
1.4 0s 0s 0s 1s
1.5 0s 0s 0s 0s

32 38674

Prob. 0.0143335 0.0720260 0.1394164 0.5291840
ETMCC 1s 2s 3s 14s

1.2 0s 1s 2s 9s
1.3 0s 1s 2s 8s
1.4 0s 0s 0s 2s
1.5 0s 0s 0s 1s

8



Workst. States 100h 500h 1000h 5000h

64 151058

Prob. 0.0251809 0.1228233 0.2312399 0.7324401
ETMCC 3s 9s 14s 58s

1.2 1s 5s 9s 40s
1.3 1s 4s 7s 33s
1.4 0s 1s 2s 8s
1.5 0s 1s 1s 4s

128 597010

Prob. 0.0391070 0.1837937 0.3344111 0.8698468
ETMCC 42s 1m 7s 1m 40s 5m 29s

1.2 6s 21s 41s 3m 5s
1.3 5s 18s 33s 2m 38s
1.4 2s 6s 11s 48s
1.5 1s 4s 7s 31s

Workst. States 10000h 30000h 50000h

1 110

Prob. 0.0865099 0.2377584 0.3639644
ETMCC 0s 0s 1s

1.2 0s 0s 0s
1.3 0s 0s 0s
1.4 0s 0s 0s
1.5 0s 0s 0s

2 274

Prob. 0.0932774 0.2546009 0.3872219
ETMCC 0s 1s 1s

1.2 0s 0s 1s
1.3 0s 0s 1s
1.4 0s 0s 0s
1.5 0s 0s 0s

4 818

Prob. 0.1758129 0.4402362 0.6198248
ETMCC 1s 2s 3s

1.2 0s 1s 2s
1.3 0s 1s 2s
1.4 0s 0s 1s
1.5 0s 0s 1s

8 2770

Prob. 0.3232411 0.6901539 0.8581406
ETMCC 2s 6s 9s

1.2 1s 4s 7s
1.3 1s 4s 6s
1.4 0s 1s 2s
1.5 0s 1s 2s
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Workst. States 10000h 30000h 50000h

16 10130

Prob. 0.5436606 0.9050388 0.9802392
ETMCC 5s 14s 23s

1.2 5s 15s 24s
1.3 4s 12s 21s
1.4 1s 4s 6s
1.5 1s 3s 4s

32 38674

Prob. 0.7784745 0.9891429 0.9994679
ETMCC 26s 1m 16s 2m 7s

1.2 18s 54s 1m 27s
1.3 17s 48s 1m 18s
1.4 4s 14s 23s
1.5 3s 7s 12s

64 151058

Prob. 0.9284749 0.9996347 0.9999981
ETMCC 1m 55s 5m 29s 9m 11s

1.2 1m 20s 3m 53s 6m30s
1.3 1m 5s 3m 4s 5m 10s
1.4 16s 45s 1m 16s
1.5 8s 25s 40s

128 597010

Prob. 0.9830755 0.9999952 1.0000000
ETMCC 10m 18s 30m 10s 58m 19s

1.2 6m 2s 18m 26s 30m 6s
1.3 5m 8s 15m 28s 24m 15s
1.4 1m 34s 4m 33s 7m 27s
1.5 57s 2m 42s 4m 30s
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