The Arbiter Tree Case Study

1 Application Context

This case study models a mutual exclusion protocol basedtmeaf binary arbiter
processes (see figure 1 for an instance with four client®&nCprocesses are situated
at the leaves of the tree. In order to gain access to the shesedrce, they may send a
request to their respective parent, which in turn passeeetigest on to its parent, etc.
When the root process of the tree receives a request, it geaexrgrant which is then
propagated back down. When the client is done with the resgitrsends a release
signal.

req, gr, rel

Arbiter 1

reqy, gry, rel; req,., gry., rely

Fig. 1. Arbiter tree: Access to a shared resource is controlled by binary arbiternged in a tree,
with a central root process

In order to avoid blocking client processes, arbiters neelie ready to receive
requests from one of their children even when they are ajrpancessing one for the
other child. In this case it makes sense to send a grant teettand child as soon as
a release is received from the first, instead of first forwagdhe release upwards and
sending a new request. This can be applied asymmetricallingga grant to the left
child first, and always forwarding releases from the righitccto the parent) in order to
not monopolize the resource.



2 Model

We model the arbiter tree using finite automata for the rabttex, and client processes.
The instances are parameterized by the hefifjbf the tree, and conta2f’ — 1 arbiters
and2” client processes. The smallest examgle£ 2) has1.02 x 10% product states;
this increases t.88 x 10'°* states in the largest instanég(= 6).

N N
O -/ / )
reqr grr rel
rel ! !
O OOt yrenlren
) U ) C
rely/rel,
req gn rel,
Q () ' J
, req N/ gr

Fig. 2. A faulty arbiter automaton

The case study uses an incorrect implementation which eatyallows several
client processes to access the resource simultaneoustysithation results from a
faulty client process sending spurious release signatsadtaw in the arbiters which
makes them not check for this possibility and discard sucig@ats One such faulty
arbiter is shown in fig. 2.

3 \Verification Results

Our heuristics are implemented inrPBAAL/DMC which is our extension of BPAAL
for directed model checking. In [1], we compared the perfamoe of UbPAAL/DMC’s
greedy search andrpAaAL's randomised depth first search (rDF), which iBRAAL’S
most efficient standard search method across many examples.

Our results clearly demonstrate the potential of our h&asisThe heuristic searches
consistently find the error paths much faster. Due to theaedisearch space size and
memory requirements, they can solve all problems. At theeséime, they find, by
orders of magnitudemuch shorter error paths iall cases.

References

1. Klaus D&ger, Bernd Finkbeiner, and Andreas Podelski. Directed modelkitgeevith
distance-preserving abstractions. In Antti Valmari, edittwdel Checking Software. Proceed-
ings of the 13th International SPIN Workshop (SPIN 2006), volume 3925 of_ecture Notesin
Computer Science, pages 19-34. Springer-Verlag, 2006.



