
The Arbiter Tree Case Study

1 Application Context

This case study models a mutual exclusion protocol based on atree of binary arbiter
processes (see figure 1 for an instance with four clients). Client processes are situated
at the leaves of the tree. In order to gain access to the sharedresource, they may send a
request to their respective parent, which in turn passes therequest on to its parent, etc.
When the root process of the tree receives a request, it generates a grant which is then
propagated back down. When the client is done with the resource, it sends a release
signal.

Root

Arbiter 1

Arbiter 2 Arbiter 3

Client 1 Client 2 Client 3 Client 4

Arbiter 1

req, gr, rel

reql, grl, rell reqr, grr, relr

Fig. 1.Arbiter tree: Access to a shared resource is controlled by binary arbiters arranged in a tree,
with a central root process

In order to avoid blocking client processes, arbiters need to be ready to receive
requests from one of their children even when they are already processing one for the
other child. In this case it makes sense to send a grant to the second child as soon as
a release is received from the first, instead of first forwarding the release upwards and
sending a new request. This can be applied asymmetrically (giving a grant to the left
child first, and always forwarding releases from the right child to the parent) in order to
not monopolize the resource.



2 Model

We model the arbiter tree using finite automata for the root, arbiter, and client processes.
The instances are parameterized by the heightH of the tree, and contain2H

−1 arbiters
and2

H client processes. The smallest example (H = 2) has1.02 ∗ 10
6 product states;

this increases to1.88 ∗ 10
104 states in the largest instance(H = 6).

//

reql

req

reqr

req

gr

gr

grl

grr

rell/relr reql/reqrrel

relr

rell

rell/relr

rel

Fig. 2.A faulty arbiter automaton

The case study uses an incorrect implementation which eventually allows several
client processes to access the resource simultaneously. This situation results from a
faulty client process sending spurious release signals, and a flaw in the arbiters which
makes them not check for this possibility and discard such a signal. One such faulty
arbiter is shown in fig. 2.

3 Verification Results

Our heuristics are implemented in UPPAAL/DMC which is our extension of UPPAAL

for directed model checking. In [1], we compared the performance of UPPAAL/DMC’s
greedy search and UPPAAL’s randomised depth first search (rDF), which is UPPAAL’s
most efficient standard search method across many examples.

Our results clearly demonstrate the potential of our heuristics. The heuristic searches
consistently find the error paths much faster. Due to the reduced search space size and
memory requirements, they can solve all problems. At the same time, they find, by
orders of magnitude,much shorter error paths inall cases.

References

1. Klaus Dr̈ager, Bernd Finkbeiner, and Andreas Podelski. Directed model checking with
distance-preserving abstractions. In Antti Valmari, editor,Model Checking Software. Proceed-
ings of the 13th International SPIN Workshop (SPIN 2006), volume 3925 ofLecture Notes in
Computer Science, pages 19–34. Springer-Verlag, 2006.


