
The Flap Controller

AVACS H3

1 Carl von Ossietzky Universität Oldenburg
Ammerländer Heerstraße 114-118, 26111 Oldenburg, Germany

2 OFFIS e.V., Escherweg 2, 26121 Oldenburg, Germany
3 Albert-Ludwigs-Universität Freiburg

Georges-Köhler-Allee 51, 79110 Freiburg, Germany
4 Max-Planck-Institut für Informatik

Stuhlsatzenhausweg 85, 66123 Saarbrücken, Germany

Abstract. We first give a general descriptions of the Flap Control sys-
tem and its Statemate model, then we discuss the derived HLang mod-
els as benchmarks for our model checking approach developed within the
context of AVACS H3 project. Our approach combines SAT, And-Inverts
Graphs, and first-order reasoing for automatic verification of hybrid sys-
tems with large discrete state-space.

1 General description

We use as a benchmark from the Avionics a simplified version a flap control
system, reported in [1]. This presentation additionally builds on notes of a lecture
by Georg Mai, Airbus Industries, given as part on a course on “Design of Safety
Critical Embedded Systems” at the Carl von Ossietzky Universität Oldenburg,
April 2000.

Flaps are movable surfaces situated on the inboard trailing edge of the wing
(see Figure 1). Flaps can be extended and lower towards predefined positions
(number of positions dependent on aircraft type), under the primary control of
the pilot. It is well known that the lift-coefficient of a wing depends on its camber.
Deflecting the trailing edge downwards can change the wing camber. Lowering
the flaps thus increases lift and drag, allowing a slower approach during landing.

Flaps are extended and retracted through the Flap Power Control Unit
(FPCU); the FPCU links to segmented shafts in each wing, and controls their
rotation, which then mechanically translates into extension and retraction of the
Flaps. See Figure 2 for a drawing of the mechanical subsystem.

For example, on the Airbus 340, the Flaps can be in five configurations (lever
positions). The pilot can select the configuration of the Flaps manually by means
of the Slat/Flap Lever. The Command Sensor Unit (CSU) converts a selection
into a set of discrete electrical signals. These signals are dispatched to their
respective channels within a Slat-Flap Control Computer (SFCC) (See Figure 3).
The new commands are “validated” within each computer, as elaborated below.
Each computer independently signals the associated hydraulic solenoid valves on
the Power Control Unit (PCU) to release the power off brake (by re-setting input

Fig. 1. The Flap Controller

P of its valve block) and to initiate either a retraction (input R) or extraction
(input E) using the hydraulic motors to drive the Flaps to the new position. When
the PCU position and the demanded position are within a specified threshold
range ahead of target position, the system will slow down (input H is low), until
the PCU achieves the actual demanded position; this basic control loop is realized
within the Flap Control Computer, by maintaining the intended position and
comparing it with the position monitored by the Feedback Position Unit Sensor.
At this point the pressure-off brake is applied (by setting the input P of its valve
block), and the PCU is shut down. This concludes the so-called normal drive
sequence. The controller has to take into account failures such as low pressure
and power interrupts, as well as turnaround commands.

The system-architecture is following the Duo-Duo-Duplex design paradigm,
providing two separate computers per aircraft, two separate HW channels for
Flap and Slat each, and two dissimilar HW lanes per channel, and triple redun-
dancy for the hydraulic pressure lanes. Two dissimilar (disagreed) commands
are necessary to generate an error. Any discrepancy of lane computations stops
and freezes the defected system. Continued operation in case of such failures
is ensured through the other SFCC’s channel, but with half drive speed at the
torque shaft.

In the following we will focus on one channel and the Flap subsystem. The
Flap Controller also implements an automatic mode of operation, the so-called
auto-relief function, which will retract the Flaps to relief Flaploads. In auto-relief
mode, the Flap Controller constantly monitors aircraft speed and aircraft attack
angle to assess, whether the load for the pilot position is too high. The Flaps
are retracted from the extended position to the next lower lever setting, if the
aircraft speed exceeds a certain threshold speed for the selected configuration
for more than a specified limit. The selected position will be automatically com-
manded again if the aircraft speed falls below the threshold speed. The system
is designed in a way that makes critical events extremely improbable. Critical
events that may significantly impact aircraft safety include the powered run-
away of the Flaps, inadvertent Flap retraction due to auto-command, overspeed
and asymmetric extension. System protection against the events is achieved by
sensing and monitoring of PCU and Flap positions and rate of change of posi-

2

Fig. 2. The Flap Controller: The mechanical subsystem

tions. Whenever a deviation is detected, both the pressure-off-brake as well as
the wing-tip brakes are applied. This functionality is implemented within the
Flap Controller.

A reference model of the Flap Controller covering the above functionality has
been developed using the Statemate product from Telelogic AB. Figure 4 below
shows the interfaces and subcomponents of the Flap Controller on an abstract
level. Inputs shown on the left side are (from top to bottom):

– The Flap lever position as signaled by the pilot (a discrete input);
– The consolidated aircraft speed and attack-angle (floats);
– Status information on the hydraulic subsystem;
– The position of the flap as measured at the gearshift within the FPCU;
– The position of the flap as measured at the wing-tip (for asymmetry detec-

tion).

The CHK-Lever sub-controller performs plausibility checks on the commanded
lever positions. The sub-controller Auto CMD and CHK POS THRESH are responsi-
ble for realizing the auto-relief function. The Monitoring component combines
sub-controllers for each of the critical conditions (powered runaway of the Flaps,
inadvertent Flap retraction due to auto-command, over-speed and asymmetric
extension). The actual control commands to the FPCU are issued by the sub-
controller called MOVEMENT CMD. The controller outputs shown on the right hand

3

Fig. 3. The Flap Controller: SFCCs

side are controlling the E, R, H, and P inputs of the FPCU explained above, the
wing-tip bake, as well as the generation of status information to the pilot.

The Statemate model of the Flap Controller consists of 30 charts (Activity
Charts and StateCharts); most of them are instances of generic chart definitions.
The state space of the model is spanned by

– 143 states (in the sense of StateCharts, including hierarchical states, i.e.
AND/OR states);

– 33 variables of type real;
– 14 variables with enumeration types;
– 7 variables of type integer;
– 38 conditions (in the sense of Statemate);
– 12 events.

In addition, the model uses 9 constants of type real, 10 constants of type array
of constants of type real, one constant of enumeration type, and 17 integer
constants.

2 Derived HLang models

For the purpose of benchmarking the verification methods developed within
AVACS, we have developed various versions of this reference model and providing
translations into the input language HLang. We have in particular developed
simple environment models along the directions explained below.

4

Fig. 4. The Flap Controller: The Statemate model

1. The Reasonable Pilot. The pilots can select the configuration of the Flaps
manually by means of lever positions. First, by construction, lever positions
can only be incremented and decremented by one, an environment assump-
tion made by the Flap Controller, and built into our model of a reason-
able pilot. Secondly, pilots by training don’t choose flap positions which are
strongly incompatible with tolerable loads (unless extreme flight maneuvers
are required due to prevent higher hazard levels), and we build this knowl-
edge into our model of a “reasonable” pilot.

2. Aircraft Model. The Flap Controller is designed to work within the bound-
aries dictated by the dynamics of the aircraft. We include a simple model of
the aircrafts dynamics, reflecting natural maximal rates of changes in aircraft
speed (and angle of attack).

3. PCU Model. We provide an abstract model of the FPCU, accepting the
FPCU inputs and returning a flap angle (corresponding to the FPPU sensors
of the FPCU). Thus the hydraulic subsystem is abstracted away.

4. The Flap Subsystem. We focus on the auto-reflief function in the Flap con-
troller. The Flap Controller constantly monitors aircraft speed, whether the
load for the pilot commanded lever position is too high. The Flaps are re-
tracted from the extended position to the next lower lever setting, if the air-
craft speed exceeds a certain threshold speed for the selected configuration
for more than a specified limit. The selected position will be automatically
commanded again if the aircraft speed falls below the threshold speed.

5. Health Monitoring. We provide a monitoring subsystem for detecting devi-
ations of the aircraft’s speed and the actual flap position, and for detecting
failures of behavior of the controller and the pilot. Whenever a situation

5

endangering the flaps is detected, the controller can deviate one more from
the input lever position.

Moreover, in our models we only use one HW channel for flaps. More details will
be given in the later discussion.

Model structure The system consists of four components: the “reasonable” pilot
behavior, the controller, the flap mechanism, and the rest of the aircraft (Fig-
ure 5). It controls two continuous variables v (velocity) and f (flap angle), and
two discrete variables ℓ (lever position set by the pilot) and c (corrected posi-
tion, set by the auto-relief function in the controller). For each lever position,
there is a pre-defined flap position flap(ℓ) and a pre-defined nominal velocity
nominal(ℓ). as described in the following table:

ℓ 0 1 2 3 4 5 6
flap(ℓ) 0 15 20 30 40 47 55

nominal(ℓ) 335 235 220 200 180 165 150

Flap controller

Rest of Aircraft

Reasonable
Pilot Mechanism

Flap
c

f

v

ℓ

Fig. 5. System components.

For each component in the system, there is one extra health monitoring
subcomponent, which monitors the behavior of the pilot and the flap controller,
checks whether the measurements of the flap angle and the speed are accurate.
The health monitoring subcomponent are triggered by fixed timeouts.

Model details The pilot component in our model ensures reasonable lever posi-
tions, by guaranteeing that the lever is at most one notch too high. The “rea-
sonable” pilot will decrease the lever position if the aircraft’s velocity exceeds
nominal(ℓ − 1). The behavior of the controller depends on both ℓ and v: When
the velocity is greater than the nominal max value (nominal (ℓ) + 2.5 knots),
the modification of the pilot behavior is activated (c = −1); when the velocity
has changed to less than the nominal min value (nominal(ℓ) − 2.5 knots), the
modification is turned off (c = 0). (This models the auto-relief function of the

6

controller.) The flap mechanism controls the continuous variable f , and depends
on the discrete variable c. It models the mechatronic which adapts the physi-
cal flap angle f to the position commanded by c. This is a process which takes
time. f has a range from 0 to 55.0. The flap angle may increase or decrease
by ∆f = 0.3125 per 100 ms, or keep as it is. (This is a simplified version of
the FPCU, and abstracts the actual physical system.) The rest of the aircraft
increases the velocity by 0.5 knots (per 100 ms), within a range from 140.0 to
340.0 knots. (This is a simplified version of the aircraft model.)

The health monitoring subcomponents are triggered by timeouts. Each sub-
component is modeled as a state machine with three states. Initially, the state
machine is in the “OK” state, and moves on clock timeout to a “Polling” state,
and checks the health of the monitored component. When the component is
not providing an answer or answers “Sick”, the responsible health monitor goes
to a “Failure” state; otherwise, it moves back to the “OK” state. This non-
deterministic choice is modeled as discrete inputs in HLang. Currently, the health
monitoring system can interact with system in the following way: On diagnosed
pilot failures, failures of the controller, or in the situations when the speed or
flap angle measurement is found to be inaccurate, one “alarm” is raised and the
controller will deviate more from the input lever position, e.g. the modification
on the lever position can deviate by one position further, thereby trying to stay
on the safe side (retract flaps earlier). (This is a slightly different version of the
monitoring system in the previous section.)

Property The invariant property “safe” to establish for the model is the following:
“For the current flap setting f , the aircraft’s velocity v shall not exceed the
nominal velocity nominal (f) plus 7 knots”. Whether this requirement holds for
our model depends on a “race” between flap retraction and speed increase. The
controller is correct, if it initiates flap retraction (by correcting the pilot) early
enough.

HLang models From this system, we can make models with different number of
lever positions. The initial states can then be defined accordingly: for a given
initial lever position ℓ, we set v as nominal(ℓ), f as flap(ℓ), and c = ff . In the
HLang models, there are totally three different modes: m0, m1 and m2. The evo-
lutions of the continuous variables are defined as follows: v̇ = 0.5 and ḟ = 0.3125
for mode m0; v̇ = 0.5 and ḟ = 0.0 for mode m1; and v̇ = 0.5 and ḟ = −0.3125
for mode m2 (of course ṫ = 0.1 for timer). The range information for v and f

is encoded as global constraints. The constraints on the flap position and the
aircraft’s velocity, such as flap(ℓ), nominal (ℓ), and nominal(ℓ) ± 2.5, together
with the periodic timeout to trigger the health monitoring subcomponents, are
treated as the boundary conditions for each mode. Health monitoring subcompo-
nents are modeled as automata with three states, The non-deterministic choice
whether the monitored component is in a health status is modeled as discrete
inputs. Extra discrete variables are needed to store these inputs and to distin-
guish whether a health monitoring component has finished its transitions. The
behavior of the pilot and the controller, the interaction of the health monitoring

7

components and the system constitutes discrete transitions in the model. After
the decision of the pilot and the controller, an appropriate mode will be selected.

In summary, in our models, there are three continuous variables: the veloc-
ity v, the flap angle f and the timer value t, three modes: m0, m1 and m2.
Discrete states of the controller and of the health monitoring system contribute
to the discrete state space. We have boolean variables for lever positions ℓ,
the modification c set by the auto-relief function, and “alarm” raised by the
health monitoring system. Moreover, there are four boolean variable to record
the non-deterministic choice for each health monitoring subcomponent, and 12
boolean variables to capture the status of the health monitoring system. The
discrete state space contains 220 discrete states. This size is clearly out of reach
for hybrid verification tools known from the literature, which do not scale in
the discrete dimension, since modes – the only discrete states considered – are
represented explicitly when performing reachability analysis.

3 Verification results of the HLang continuous models

With AVACS H3 subproject, we have proposed an approach for verification of
hybrid systems, which contain large discrete state spaces and simple continuous
dynamics given as constants [4] We use AND-Inverter Graphs (AIGs) extended
with linear constraints (Lin-AIGs) as symbolic representation of the hybrid state
space. Our model checker was able to prove the given safety invariant for the
case study in 888.6 CPU seconds. The Lin-AIG representation had a maximum
number of 30887 nodes and a maximum number of 80 linear constraints. This
result clearly demonstrates that our approach is able to successfully verify hybrid
systems including discrete parts with state spaces of considerable sizes. Our
experiments were run on an AMD Opteron with 2.6 GHz and 16 GB RAM.

4 Verification results of the Statemate discrete model

For the verification results presented in this section the Statemate model of
the Flap Controller System was used. This is possible by using a pre-existing
translation of Statemate to an internal representation called SMI [3, 6], to which
the ω-Cegar approach [5] can be applied directly. As usual, a preceding cone-of-
influence reduction of the model might remove parts of the model if by syntactical
analysis it can be determined that they have no impact on the property.

The proofs being checked on the Flap Controller System are reachability
checks for invariant violations and certain system states. The verification tech-
nique to achieve these results was the ω-Cegar approach in combination with
a bounded model-checker (BMC). Since the model is too big for a BDD-based
model-checker (e.g. VIS [2]), the unreachability of certain expressions could not
be proved. Instead, the BMC technique showed the unreachability within a cer-
tain number of steps being higher than the anticipated diameter of the model.
Table 1 shows statistical information of some properties being checked on this
model. For a detailed description of the provided values see [5].

8

Proof |Z| dims |Σ| —Ci|/|Cv | #it |π| |AC | time

ϕ1 2240 4+14 587 54/286 58 ≥? 39 100 44 min +MCf
a

ϕ2 2240 4+14 420 130/109 143 6 138 88 min

ϕ3 2240 4+14 393 119/116 133 6 163 160 min

ϕ4 29 2+4 6 2/2 3 6 4 1 min

ϕ5 2240 4+14 0 0/0 0 ≥? 50 2 10 min

ϕ6 2240 4+14 6323 497/1345 958 8 1414 55 h

a MCf is the time required for the final model-checker run after all refinement steps are
completed. Time depends on bound for proving unreachability of property violation
therein (BMC takes 130 min for a bound of 39 steps) or, alternatively, time required
for BDD-based modelchecker to prove the expected unreachability (more than days
required for this proof).

Table 1. Overview on experimental results. The table contains columns for the number
of discrete states inside the cone-of-influence, the number of continuous dimensions
(input and state-based) within the cone-of-influence, the number of different regulation
laws |Σ|, the number of generalized initial and invariant conflicts |Ci|/|Cv |, #it is the
number of iterations of the abstraction refinement process and |π| is the length of the
path preceded by the symbol ≥? if the process was interrupted at the given length of
spurious counterexamples. Finally |AC | is the number of state-bits of the ω-automaton
being used for refinement of the abstracted model and the last column contains the
total required time for the overall verification process.

Proofs

Property ϕ1 := (AG(¬(retract ∧ extend))) This Property specifies an invariant
of the system, saying that the outputs retract and extend must never be true
at the same time. By using a bounded model-checker, it was proven that within
the first 39 steps, the invariant cannot be violated.

Property ϕ2 := (EF(retract)) This property specifies that it must be possible
to set the retract signal. The result is a witness path of length 6, showing how
this is possible.

Property ϕ3 := (EF(extend)) This property specifies that it must be possible
to set the extend signal. The result is a witness path of length 6, showing how
this is possible.

Property ϕ4 := (EF(overspeed cn)) Here, the reachability of a certain state
named overspeed cn is specified and proven by a witness path of length 6.

Property ϕ5 := (AG(¬(shutdown error ∧ (retract ∨ extend))) This is another in-
variant of the system where neither the retract, nor the extend signal must be
set, if a shutdown error -state is active. Within a time of 10 minutes, it is proven
that the invariant holds at least for the first 50 steps.

9

Property ϕ6 := (EF(continue cmd ev)) This property specifies that it must be
possible to set the continue cmd ev signal. The result is a witness path of length
8, showing how this is possible.

References

1. M. Bretschneider, H.-J. Holberg, E. Böde, I. Brückner, T. Peikenkamp, and
H. Spenke. Model-based safety analysis of a flap control system. In Proc. 14th

Annual INCOSE Symposium, 2004.
2. R. K. Brayton, G. D. Hachtel, A. Sangiovanni-Vincentelli, F. Somenzi, A. Aziz, S.-

T. Cheng, S. Edwards, S. Khatri, Y. Kukimoto, A. Pardo, S. Qadeer, R. K. Ranjan,
S. Sarwary, T. R. Shiple, G. Swamy and T. Villa. VIS: a system for verification and
synthesis. In Proc. 8th Conference on Computer Aided Verification, Lecture Notes
in Computer Science 1102, pp. 428-432. Springer, 1996.

3. U. Brockmeyer. Verifikation von STATEMATE Designs. PhD thesis, Universität
Oldenburg, 1999.

4. W. Damm, S. Disch, H. Hungar, S. Jacobs, J. Pang, F. Pigorsch, C. Scholl, U.
Waldmann, and B. Wirtz. Exact state set representations in the verification of
linear hybrid systems with large discrete state-space. In Proc. 5th Symposium on

Automated Technology for Verification and Analysis, Lecture Notes in Computer
Science. Springer, 2007.

5. M. Segelken. Abstraction and counterexample-guided construction of ω-automata
for model checking of step-discrete linear hybrid models. In Proc. 19th Conference

on Computer Aided Verification, Lecture Notes in Computer Science 4590, pp. 433-
448. Springer, 2007.

6. G. Wittich. Ein problemorientierter Ansatz zum Nachweis von Realzeiteigenschaften
eingebetteter Systeme. PhD thesis, Universität Oldenburg, 1998.

10

