
Mutual Exclusion with Random Times

AVACS S3 Benchmark⋆

1 Albert-Ludwigs-Universität Freiburg, Fahnenbergplatz, 79085 Freiburg, Germany
2 Carl von Ossietzky Universität Oldenburg, 26111 Oldenburg, Germany

3 Universität des Saarlandes, 66041 Saarbrücken, Germany

1 Introduction

In this benchmark we exemplify the effects of interactive Markov chain (IMC) modelling and
model transformation to continuous-time Markov decision processes (CTMDPs) on a non-trivial
example. We consider a solution to the mutual exclusion (mutex) problem that is based on the
Fischer/Lamport algorithm [12], but enhanced with random times [3,4]. The basic idea of this
variant is to equip the necessary mutex operations with random delays – governed by negative
exponential distributions. This enables the study of performance aspects of the algorithm. We
refer to the detailed exposition in [3,4] and recall here the basic definitions and notions used for
describing mutual exclusion of processes, which we will here call processors.

We model the functional part of the algorithm in terms of Lotos [9] processes using the Cadp [6]
toolbox. Including timed behaviour into the functional model is realised as exposed in [2]. Gen-
erating IMCs and ensuring the necessary property of being uniform is treated in more detail
in [10,8]. In this case study we have made extensive use of the Svl scripting language [5] inte-
grated in Cadp.

In the following we assume that the reader is familiar with the concepts of IMCs [7] and CTMDPs
as, for instance, given in [13].

2 Terminology

Given that we refer to parts of Lotos specifications as processes we will not overload this term
by reusing it for the participants of a mutual exclusion procedure. In the following a process in
the scenario of mutual exclusion will be referred to as processor. An important concept in mutual
exclusion problems is that of a lock. A lock comprises of a shared variable and three different
operations on it. These are

– inspecting, where the lock is inspected whether it is empty, i. e., it is checked if its variable
equals 0,

– reading, this operation reads the actual value stored in the locks’ variable and returns it,
– writing, allows a write operation on the locks’ variable.

Each of these operations is assumed to take a randomly distributed amount of time to finish. In
our models we assume all distributions to be negative exponential, but with different parameters

⋆ http://www.avacs.org

Algorithm 1 Fischer/Lamport mutual exclusion algorithm

1: x, y: shared variables, initially 0;

2: J: processor index;

3: ⊲ remainder region

4: L: ⊲ trying region

5: if x != 0 goto L;

6: x := J;

7:

8: if x != J goto L;

9:

10: if y != 0 goto L;

11: y := 1;

12:

13: if x != J goto L;

14: enter critical section

15: ⊲ critical region

16: exit critical section

17:

18: y := 0; ⊲ exit region

19: x := 0;

20: endproc

for each of the three operations. A processor is said to own a lock, if it has written and read its
unique identity number to and from it after inspecting the lock to be empty.

A register is a special kind of a lock whose shared variable is capable of storing exactly one bit.
As a register can only store values 0 and 1, there is no functional distinction between inspecting
and reading it.

We use this basic terminology to give a brief description of the different regions a processor can
be in

– the remainder region, here a processor does all its work not related to its critical region,
– the trying region, where the entry of the critical region is coordinated, i. e., a processor tries

to own (a) lock(s),
– the critical region, where exclusive access is required,
– the exit region, here a processor leaves its critical region and frees all locks owned by it which

means that all locks are reset to 0.

3 Mutual exclusion algorithm

Algorithm 1 displays the Fischer/Lamport algorithm as described in [3]. The algorithm uses a
lock x with an additional register y. If processor J has owned lock x it enters its critical region.
Here, owning lock x depends on register y. Using the terminology of [3], the depicted algorithm
has the following properties. The algorithm ensures mutual exclusion – at any time at most
one processor is in its critical region. Furthermore, weak deadlock-freedom is ensured, i. e., if
one particular processor is in its trying region and all other processors are concurrently in their
remainder regions, then this particular processor will eventually enter its critical region. The

SETX!0

GETX!0

SETX!1

SETX!2

SETX!1

GETX!1

SETX!0

SETX!2

SETX!2

GETX!2

SETX!0

SETX!1

Fig. 1. Variable with range {0, 1, 2}.

same holds for the exit region. If exactly one processor is in its exit region and concurrently
all other processors are in their remainder regions, all locks are eventually reset. The stronger
version, called deadlock-freedom, is not ensured. In this setting deadlock-freedom requires that
when some processor is in its trying (respectively, exit) region, subsequently some processor will
be in its critical (remainder) region. However, this is not ensured by Algorithm 1. In fact, it is
possible that the entire algorithm gets into a deadlock state.

4 Modelling with Cadp

For the mutual exclusion algorithm we have to model the two variables x and y, the processes
and the time constraints of inspecting, reading and writing a variable.

In the following we show the principle structure of the LTSs representing the functional behaviour
of the processors and of the variables, respectively. Together with the pictorial description we
provide the belonging Lotos processes.

Locks. In Figure 1 we show the LTS for variable x that has a range of {0, 1, 2}, i. e., two processors
are considered. Actions GETX!i, for i ∈ {0, 1, 2}, are used to indicate that value i is read from
variable x. Similar, actions SETX!j, for j ∈ {0, 1, 2}, are used to indicate that value j is written
to variable x. Intuitively, in the initial state, the value of x is 0 and thus, only actions GETX!0

and SETX!j for j ∈ {0, 1, 2} are available. In particular, writing a certain value to x is always
possible, but only the current value of x can be read. We have depicted the LTS just for two
processors for the sake of readability and to show the general structure of LTSs representing
variables. Variable y is modelled in exactly the same way, except that we use action names
GETY and SETY instead of GETX and SETX, respectively. The range of variable y is {0, 1}
as it is a register comprising of a boolean variable.

The Lotos processes for lock x and register y are shown in Appendix A as Process 1 and
Process 2 on page 7.

GETY!=0

START!1

GETX!=0

GETX!0 SETX!1

GETX!=1

GETX!1

GETY!0

SETY!1

GETX!=1

GETX!1ENTER!1SETY!0

SETX!0

Fig. 2. General behaviour of processor with id 1

Processors. The LTS of a processor can directly be deduced from Algorithm 1. As an example,
we show the general structure of an LTS representing the processor with unique id 1 in Figure 2.
Here, we use actions START!1 and ENTER!1 to indicate that processor 1 enters its trying region
and its critical section, respectively. Once the processor has entered its trying region it inspects
lock x. Only if x is empty processor 1 continues. Otherwise, it remains in the black filled state
until lock x is observed to equal 0. We have indicated this in Figure 2 by using action name
GETX!=0. In all of the grey shaded states the processor behaves similarly: A variable has to
be read (or inspected), and only if the value is as indicated by Algorithm 1 the processor is
allowed to continue. Otherwise, it returns to the black filled state, representing the beginning of
the trying region.

Now, all of the actions GETX, GETY and SETX, SETY have to be delayed. For example, in
the black filled state, lock x is inspected. However, there are emanating actions GETX!0 and
GETX!=0, but by no means they are delayed in isolation, i. e., there is no delay for each of these
actions. In fact, introducing a delay for each of these actions would introduce a race between
Markov transitions, but there is only a singular delay covering the inspection in total. Therefore,
we slightly modify the LTS shown in Figure 2 as follows. In the black state the delay for inspecting
lock x has to be started. We do so by adding two transitions, as shown in Figure 3 (left). The
action that has to be delayed equals insp, and the delay is started once action sInsp has occurred.
The time constraint for insp is depicted on the right hand side of Figure 3.

The according Lotos processes (Process 3 to Process 7) modelling the processor with id J are
shown in Appendix A.

sInsp insp GETX!0

GETX!=0

λ

sInsp

λinsp

λ

Fig. 3. LTS fragment and time constraint for inspection

Unminimised model Generation Minimised model Minimisation
States Transitions time States Transitions time

1 17 28 1.45s 9 12 2.26s
2 797 2375 1.74s 149 422 2.30s
3 20883 83482 2.38s 1673 6301 3.45s
4 450209 22509191 26.08s 17943 87935 255.1s
5 8852319 53113612 1h 10m 33s na na na

Table 1. System sizes and generation/minimisation times

5 Compositional generation

The uniform IMCs of the time constraints and the LTSs of the processors are composed as dis-
cussed in [10,8]. The uIMCs representing the individual processors are fully interleaved before
synchronising with the variables. Here, the synchronisation set comprises of all read and write
actions, i. e., {GETX!i, SETX!i, GETY!j, SETY!j}, where i ∈ {0, 1, . . . , N}, N is the number of
participating processors and j ∈ {0, 1}. Hiding of these actions in the composed model and a
subsequent minimisation step yields the uIMC that we pass to the transformation [10]. However,
the mutual exclusion example is not well scalable. In particular, for N = 5, i. e., for five partici-
pating processors, we were not able to minimise the model. Statistics of the generated model can
be found in the next section.

6 Results

We have applied the transformation steps [10] to the IMCs obtained from the discussed specifi-
cation for a different number of participating processors. Table 1 shows statistics on the unmin-
imised and minimised models. Columns two and three show the number of states and transitions
of the unminimised model, respectively. In column four we have depicted the generation time.
The number of states and transitions of the minimised model and the minimisation times are
shown in columns five, six and seven respectively. As mentioned above, we were not able to
minimise the model with N = 5 processors.

A strictly alternating IMC directly corresponds to a CTMDP, and we show in Table 2 the sizes of
the strictly alternating IMCs and the memory usage of the so-called underlying CTMDPs together
with the transformation time. These statistics have been generated by our implementation of the
transformation procedure from IMCs to CTMDPs. For a detailed explanation we refer to [10].

The computation of quantitative timed-reachability properties is carried out on the underlying

CTMDP of the IMC. The proposed algorithm [1] for this has been integrated in an (yet) unofficial

States # Transitions Transf.
Inter. Markov Inter. Markov Mem time (s)

1 9 8 9 14 228 B 0.13
2 125 98 126 273 4.8 KB 0.14
3 1190 931 1195 3441 68 KB 0.16
4 10870 8418 10893 40876 849 KB 0.52

Table 2. Resulting CTMDP and transformation times

1 ms 2 ms 25 ms 50 ms 100 ms

1 0.05 0.05 0.05 0.06 0.08 Runtime (s)
144 153 168 193 243 Iterations

0 0 0 0 0 Prob.

2 0.12 0.14 0.2 0.21 0.3 Runtime (s)
145 163 193 243 343 Iterations
0.00 0.17 0.35 0.56 0.81 Prob.

3 0.21 0.25 0.31 0.43 0.65 Runtime (s)
146 173 218 293 443 Iterations
0.00 0.26 0.5 0.74 0.93 Prob.

4 4.32 5.48 7.65 10.4 15.71 Runtime (s)
147 183 243 343 543 Iterations
0.00 0.25 0.54 0.8 0.96 Prob.

Table 3. Timed reachability analysis of the mutual exclusion algorithm

release of the Mrmc [11] model checker. We have computed the worst-case probability to reach
a deadlock state within t time units for different time bounds t. For this, the mean durations
of exponential distributions for inspecting, reading and writing a variable are chosen as 1ms,
2ms and 1.4ms, respectively. We show the results in Table 3. For example, the second column
shows the results for t = 1ms. In rows two to four the results for one participating processor are
shown. The first number denotes the computation time, the second number equals the number
of iterations and the third number shows the probability to reach a deadlock state. For one
participating processor, the worst-case probability to reach a deadlock state always equals 0.

References

1. C. Baier, B. R. Haverkort, H. Hermanns, and J.-P. Katoen. Efficient Computation of Time-Bounded
Reachability Probabilities in Uniform Continuous-Time Markov Decision Processes. TCS: Journal

on Theoretical Computer Science, 345(1):2–26, 2005.
2. E. Böde, M. Herbstritt, H. Hermanns S. Johr, T. Peikenkamp, R. Pulungan R. Wimmer, and

B. Becker. Compositional Performability Evaluation for Statemate. In QEST: Conference on Quan-

titative Evaluation of SysTems, pages 167–176. IEEE Computer Society, 2006.
3. E. Gafni and M. Mitzenmacher. Analysis of Timing-Based Mutual Exclusion with Random Times.

In Symposium on Principles of Distributed Computing, pages 13–21, 1999.
4. E. Gafni and M. Mitzenmacher. Analysis of Timing-Based Mutual Exclusion with Random Times.

SIAM Journal on Computing, 31(3):816–837, 2001.
5. H. Garavel and F. Lang. SVL: A Scripting Language for Compositional Verification. In FORTE:

Workshop on Formal Techniques for Networked and Distributed Systems, pages 377–394, 2001.
6. H. Garavel, F. Lang, and R. Mateescu. An Overview of CADP 2001. In EASST Newsletter, volume 4,

August 2002.
7. H. Hermanns. Interactive Markov Chains and the Quest for Quantified Quality, volume 2428 of

LNCS. Springer, 2002.
8. H. Hermanns and S. Johr. Uniformity by Construction in the Analysis of Nondeterministic Stochastic

Systems. In DSN: International Conference on Dependable Systems and Networks, pages 718–728,
2007.

9. ISO. IS8807 : Information Processing Systems - Open System Interconnection - LOTOS - A formal

description technique based on the temporal ordering of observational behavior. ISO, February 1989.
10. S. Johr. Model Checking Compositional Markov Systems. PhD thesis, Universität des Saarlandes,

2007. submitted.

11. J.-P. Katoen, M. Khattri, and I. S. Zapreev. A Markov reward model checker. In QEST: Conference

on Quantitative Evaluation of SysTems, pages 243–244. IEEE Computer Society, 2005.
12. N. Lynch and N. Shavit. Timing Based Mutual Exclusion. In RTSS: Real-Time Systems Symposium,

pages 2–11, 1992.
13. M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley,

1994.

A Lotos processes

In the following Lotos processes we use

G = STARTME, sInsp, insp, sRead, read, sWrite, write, GETX, SETX,

GETY, SETY, ENTER

as an abbreviation.

Process 1 Lock

1: process X [GETX, SETX] (VAL : Nat) : noexit :=

2: GETX ! VAL; X [GETX, SETX] (VAL)

3: []

4: SETX ? x : Nat; X [GETX, SETX] (x)

5: endproc

Process 2 Register

1: process Y [GETY, SETY] (VAL : BOOL) : noexit :=

2: GETY ! VAL; Y [GETY, SETY] (VAL)

3: []

4: SETY ? y : BOOL; Y [GETY, SETY] (y)

5: endproc

Process 3 Remainder region

1: process Remainder [G] (J : Nat) : noexit :=

2: STARTME ! J; TryOne [G] (J)

3: endproc

Process 4 First part of trying region

1: process tryOne [G] (J: Nat) : noexit :=

2: sInsp; insp; GETX ? x : Nat;

3: (

4: [x == 0] → sWrite; write; SETX ! J; tryTwo [G] (J)

5: []

6: [x <> 0] → tryOne [G] (J)

7:)

8: endproc

Process 5 Second part of trying region

1: process tryTwo [G] (J: Nat) : noexit :=

2: sRead; read; GETX ? x : Nat;

3: (

4: [x == J] → tryThree [G] (J)

5: []

6: [x <> J] → tryOne [G] (J)

7:)

8: endproc

Process 6 Third part of trying region

1: process tryThree [G] (J : Nat) : noexit :=

2: sInsp; insp; GETY ? y : BOOL;

3: (

4: [NOT(y)] → sWrite; write; SETY ! TRUE; crit [G] (J)

5: []

6: [y] → tryOne [G] (J)

7:)

8: endproc

Process 7 Last part of trying region, critical region and exit region

1: process crit [G] (J : Nat) : noexit :=

2: sRead; read; GETX ? x : Nat;

3: (

4: [x == J] → ENTER ! J; ⊲ in critical section

5: sWrite; write; SETY ! FALSE; ⊲ exit region

6: sWrite; write; SETX ! 0;

7: remainder [G] (J)

8: []

9: [x <> J] → tryOne [G] (J)

10:)

11: endproc

