
A networked control system as a case study for

model checking of probabilistic hybrid systems ∗

Martin Fränzle, Tino Teige, and Andreas Eggers,
Carl von Ossietzky Universität Oldenburg, Germany

Dpt. of Computing Science, Research Group Hybrid Systems

September 4, 2009

1 Case study

In this benchmark description, we present a networked control system as an
example for the quantitative analysis of probabilistic hybrid systems. Though
the scenario of this case study is of academic nature, it is representative for
a number of real-world industrial applications comprising the interplay of con-
trolled continuous processes with feedback control mediated by a communication
network exhibiting communication latencies. Among the frequently used com-
munication protocols in such environments is the class of carrier sense multiple
access protocols with collision detection (CSMA/CD) or with randomized colli-
sion avoidance (CSMA/CA), which are popular because of their relatively low
average-case latency and the widespread availability of corresponding network
components. The price to be paid is a broad variation in actual communication
latencies stemming from retries after collision detection or random retreat in
collision avoidance. The resulting large jitter in the end-to-end latency of the
feedback path poses a major problem in networked control systems. A classical
countermeasure is a pessimistic and thus costly dimensioning of the communica-
tion network, which results from both the aim of generally keeping the jitter low
and the limited ability of current analysis methods to analyze such systems in
their entity. The holistic model of the networked control loop presented herein,
covers not only the effects of jitter on the controlled system, but also the other-
wise often neglected dependency of communication frequency and thus collision
probability and jitter on the state of the controlled system.

The case study is illustrated in Figure 1. Two processes are to be regulated
by a networked control unit. These processes of potentially physical, biological,

∗This work has been partially supported by the German Research Council (DFG) as part
of the Transregional Collaborative Research Center “Automatic Verification and Analysis of
Complex Systems” (SFB/TR 14 AVACS, www.avacs.org).

1

process 2

actuator 1

actuator 1

process 1

sensor 1
sensor 2

bus

controller

Figure 1: A networked controlled system

or chemical nature are continuously evolving while the actuators may occasion-
ally switch some of their controlled inputs, causing a change of their continuous
behaviors. Periodically, the observable states of the processes are measured by
the sensors and then transmitted to the controller via the communication bus.
The controller checks whether the current state of a process requires some mod-
ification of its inputs to change the process’ behavior. If so, the controller sends
an adequate data package over the bus to the corresponding actuator. In the
present scenario we assume the bus to be a shared medium subject to collisions,
i.e. only one of the sensors and controller may use the bus at a particular time.
Obviously, this restriction leads to situations where a device is ready to send but
cannot actually start sending due to bus occupancy, and also to situations where
messages get lost due to simultaneous sending of more than one device. In both
cases the protocol tries to resolve the undesired situation by random retreat,
i.e., through assigning a random delay (before resend) to each of the conflicting
senders. Given such a randomized protocol embedded in the described applica-
tion, a quantitative analysis of the overall system requires a precise exploration
of all the possible interplay between the continuously evolving processes, the
timing delays of the discrete components, as well as the probabilistic choices in
resolving potential communication conflicts.

2 Parallel components model of the case study

An implementation of the abstract case study motivated above is shown in Fig-
ure 2 and Figure 3. We have modelled the system by a set of parallel automata,
each reflecting particular aspects of the system dynamics. Note that flattening
out this concurrent system by a product construction would yield a PHA of
26 · 32 · 53 · 7 = 504.000 locations and, due to two further Boolean variables sig-

2

sent succ
time ≤ next

wait for send
time ≤ next

wait
time ≤ next

sense
time ≤ next

send
time ≤ next

time ≥ next
/ next′ = time+
4,

bus val 1′ =
x1

¬ bus free
∧ time ≥ next

/ next′ = time + 13

/ next′ = time + 7

/ next′ = time + 4

time ≥ next

bus free ∧ time ≥ next
/ next′ =
time + 1

0.25

0.5

0.25

time ≥ next
∧ bus error

time ≥
next

/ next′ =
time + 20

time ≥ next
∧ ¬bus error / next′ = time

Sensor 1 (s1):

sent succ
time ≤ next

wait for send
time ≤ next

wait
time ≤ next

sense
time ≤ next

send
time ≤ next

/ next′ = time

/ next′ = time + 13

0.25

0.5

0.25

time ≥ next

time ≥ next
/ next′ = time+
4,

bus val 2′ =
x2

bus free ∧ time ≥ next
/ next′ =
time + 1

¬ bus free
∧ time ≥ next

time ≥ next
∧ bus error

/ next′ = time + 3

/ next′ = time + 9

time ≥
next

/ next′ =
time + 20

time ≥ next
∧ ¬bus error / next′ = time

Sensor 2 (s2):

/ next′ = time

bus error
(
∑

i∈{s1, s2, cs1, cs2}
i.send)
≥ 1

¬ bus error
(
∑

i∈{s1, s2, cs1, cs2}
i.send)
≤ 1

Bus error detection (bus error):

s1.send
+s2.send
+cs1.send
+cs2.send
> 1

s1.send + s2.send + cs1.send + cs2.send > 1

s1.send + s2.send + cs1.send + cs2.send = 0

s1.send
+s2.send
+cs1.send
+cs2.send
≤ 1

bus free
(
∑

i∈{s1, s2, cs1, cs2}
i.send)

= 0

¬ bus free
(
∑

i∈{s1, s2, cs1, cs2}
i.send)
≥ 1

Bus free detection (bus free):

s1.send
+s2.send
+cs1.send
+cs2.send
= 0

s1.send + s2.send + cs1.send + cs2.send = 0

s1.send + s2.send + cs1.send + cs2.send ≥ 1

s1.send
+s2.send
+cs1.send
+cs2.send
≥ 1

˙time = 1

receiving

idle ¬ bus error
∧¬ cs1.send
/ p1 toggle!

cs1.send

bus error

Actuator 1 (a1):

receiving

idle ¬ bus error
∧¬ cs2.send
/ p2 toggle!

cs2.send

bus error

Actuator 2 (a2):

up

ẋ2 =
(−x2 + 10)

200

¬up

ẋ2 =
(−x2 − 10)

200

x2 =∗

p2 toggle?

Process 2 (p2):

up

ẋ1 =
(−x1 + 10)

100

¬up

ẋ1 =
(−x1 − 10)

100
p1 toggle?

x1 =∗Process 1 (p1):

Time passage:

time = 0

∗Note: there are several variants of this bench-
mark with different initial conditions.

∗Note: there are several variants of this bench-
mark with different initial conditions.

Note: next is a local variable.

Note: next is a local variable.

Figure 2: Parallel automata of the case study: bus, sensors, actuators, and
continuous processes.

3

wait for send
time ≤ next

wait
time ≤ next

sense
time ≤ next

send1
time ≤ next

send2
time ≤ next

idle

send succ
time ≤ next

0.75

0.25

¬ bus free
∧ time ≥ next

time ≥ next

bus free ∧ time ≥ next /
next′ = time + 1

time ≥ next ∧
(ca.send1
∨ ca.send12)
/ next′ =
time + 4 time ≥ next ∧

(ca.send2
∨ ca.send21)
/ next′ =
time + 4

time ≥ next
∧ bus error

time ≥ next
∧¬bus error

/ cs sent1 succ′ = true

next′ = time

time ≥ next
∧¬bus error

/ cs sent2 succ′ = true

next′ = time

processing
time ≤ next

action needed

processing
time ≤ next

idle

action needed

idle

send 1 send 12

send 21

idle

send 2

/ next′ = time + 2

/ next′ = time + 5

¬ ca.idle / next′ = time

time ≥ next
∧ bus error

time ≥ next/
cs sent1 succ′ = false

cs sent2 succ′ = false

Note: next is a local variable.

Controller arbiter (ca):

Controller receiver for sensor 2 (cr2):

Controller receiver for sensor 1 (cr1):

cs send2 succ

time ≥ next

cs send1 succ

time ≥ next

s1.sent succ
∧ |bus val 1| ≥
8
/ next′ = time+
2

s2.sent succ
∧ |bus val 2| ≥
8
/ next′ = time+
2

cs sent1 succ

cs sent2 succ

cs sent1 succ ∧
cr2.action needed

cr2.action needed
∧¬ cs sent1 succ

cs sent1 succ

cs sent2 succ

cr1.action needed ∧
cr2.action needed

cs sent2 succ ∧
cr1.action needed

cr1.action needed
∧¬ cs sent2 succ

cr2.action needed

cr1.action needed

Controller sender (cs):

Figure 3: Parallel automata of the case study: parts of the controller.

4

nalling successful sends, slightly more than 2 million discrete states. In Figure 2,
the plant model with its continuous evolution is given by two hybrid automata
representing the two processes p1 and p2. If left uncontrolled, each of the pro-
cesses converges exponentially to either +10 or -10, depending on the mode it
is in. The task of the controller will be to keep the system inside the corridor
[−8.8, 8.8] by switching between the modes early enough. Therefore sensors,
depicted by the automata s1 and s2, regularly try to send current measure-
ments of the continous variables x1 and x2 representing the continous state of
the plant over the bus to the controller. The controller (cf. Figure 3) comprises
a receiver part for each of the sensors (cr1 and cr2), an arbiter (ca) to queue
pending messages to be sent to the actuators, and a sender (cs) whose task is
to transmit the actual messages to the actuators. In order to compensate for
the anticipated network delay, the controller already decides to send a switch
message, whenever a received sensor value lies outside the corridor of [−8.0, 8.0].
Successfully receiving such a switch message from the controller, the actuators
(a1 and a2) perform the switch – modelled by sending an event p1 toggle or
p2 toggle to the respective process p1 or p2.

As the bus protocol is one of the central aspects of the model, a more detailed
explanation is of interest. As mentioned above, only one device can successfully
transmit a message over the bus at a particular time. If more than one sender is
using the bus, this can be detected afterwards – in practice by, e.g., bus snooping
or through an acknowledge message from the adressed receiver or its absence.
This behavior is modelled by the bus error automaton, which switches to its
error state as soon as there is more than one sender and leaves it only after the
last of these senders has ceased sending. Thus, also the last sender can detect
that its message has not been transmitted successfully.

According to the implemented protocol, a device has to sense the bus prior
to actually starting to send in order to avoid unnecessary conflicts. If the bus
is not free when sensing or an error occurred during transmission, a random
retreat scheme is employed by setting a timer to a random value and waiting
for the corresponding timespan. These random delays can be seen in the au-
tomata on the probabilistic transition from states sense to wait and send to
wait respectively. For sensor s1, these are, e.g., 4 time units (tu) chosen with
probability 0.25, 7 tu (probability 0.75), and 13 tu (probability 0.25). We chose
lower delays for the controller because its messages have a higher urgency –
it only sends a message if a toggle is really required. The sensor messages on
the other hand will often contain measurements that will not cause any further
reaction, as they will mostly frequently indicate that the current control mode
can be held.

3 Encoding of the system

In the predicative encoding each instance of the variables describes the system’s
state at a particular point of time. Therefore, parallelism demands that each
automaton can be interrupted and perform a transition at any moment – keeping

5

the valuation of its variables constant (often called stutter jumps). The formula
thus explicitly encodes such self loops that are invisible in the automata depicted
in the figures. The different forms of communication between the automata
(using events, shared variables, or state observation) are all mapped to using the
valuation of the corresponding variables in those parts of the formula encoding
transition guards or actions. To compute the duration between two successive
snapshots in a scheduled event fashion, we introduce a step variable for each of
the components that is set to zero whenever the automaton switches between
modes (which takes no time) or set to the flow duration when the automaton is
known to reside in a mode (e.g. when a sensor is waiting). In the latter case, the
next variables (encoding the temporal position of the next event) are used to
determine these durations. The duration of the global step is thus the minimum
of the local steps.

For more details, we refer the reader to the input files that contain the
complete encoding.

We compare three different encodings of the continuous behavior. First,
we encode the differential equation directly. As for this example, the closed-
form solutions are easily computable, in a second encoding the ODE constraints
are replaced by the explicit solution functions – thus forming a model without
any ODE constraints. Assuming that such solution functions are not always
easily obtainable, our third model comprises a safe overapproximation of the
continuous behavior. In order to achieve this, we calculate the first Taylor
terms of the ODE’s exact solution and use the knowledge that any trajectory
starting within [−10, 10] will never leave that interval, to bound the error term.
The resulting formula thus performs an Euler step and compensates for the
truncation error using the bounded second order Taylor term. For the ODEs

d x

d t
=
−x(t) + 10

r
, with r ∈ {100, 200} (I)

d x

d t
=
−x(t)− 10

r
, with r ∈ {100, 200} (II)

the solution functions are given by

x(t0 + h) = 10 + e−h/r · (−10 + x(t0)) for (I)

x(t0 + h) = −10 + e−h/r · (10 + x(t0)) for (II)

and the overapproximations by

x(t0 + h) ∈ x(t0) + h · −x(t0) + 10
r

+
h2

2
· −[0, 20]

r2
for (I)

x(t0 + h) ∈ x(t0) + h · −x(t0)− 10
r

+
h2

2
· −[−20, 0]

r2
for (II)

using [−10, 10] as a safe overapproximation for x(t) in the remainder term.
Figure 4 illustrates the enclosure characteristics of this overapproximation and
its conservativeness for different stepsizes h and r = 100.

6

−15

−10

−5

 0

 5

 10

 15

 0 50 100 150 200

(I) upwards, exact
(I) upwards, stepsize= 1

(I) upwards, stepsize=10

(I) upwards, stepsize=10

(II) downwards, stepsize=10

(II) downwards, stepsize=10

(I) upwards, stepsize= 1

(II) downwards, stepsize= 1
(II) downwards, exact
(II) downwards, stepsize= 1

x(t)

t

Figure 4: Overapproximation compared to exact solution.

Additionally, we define four scenarios, that have different characteristics re-
garding the amounts of probabilistic and existential quantification and non-
determinism.

1. By replacing the random choices in the model by pre-defined constant
values and setting the initial values of x1 and x2 to 0, the model becomes
completely deterministic. We use this model to validate the behavior of
the system.

2. Again fixing the initial values of x1 and x2 to 0 but leaving the ran-
domized quantification intact, we get the smallest model that reflects the
described behavior, i.e. faithfully represents collisions on the bus and the
consequences of random retreat.

3. The third scenario also uses random quantification but adds existential
quantification for the initial values. Instead of setting them to fixed val-
ues, both, x1 and x2 can be set to any value from {−2,−1, 0, 1, 2} inde-
pendently.

4. In the fourth scenario, a level of non-determinism for the initial values of
x1 and x2 is added. Instead of assigning the values from the existential
quantifier’s domain directly, they are used to map x1 and x2 to initial
ranges from {[−2,−1], [−1, 0], [0, 1], [1, 2]}.

For each of these scenarios the three encodings have been generated. These can
be found in the accompanying archive file.

7

