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Andreas Podelski, Reinhard Wilhelm

ATRs (AVACS Technical Reports) are freely downloadable from www.avacs.org

Copyright c© April 2008 by the author(s)

Author(s) contact: Martin Fänzle (mf@avacs.org).



SAT Modulo ODE:

A Direct SAT Approach to Hybrid Systems

Andreas Eggers, Martin Fränzle, and Christian Herde⋆

Dept. of CS, Carl von Ossietzky Universität Oldenburg, Germany
{eggers|fraenzle|herde}@informatik.uni-oldenburg.de

Abstract. In order to facilitate automated reasoning about large
Boolean combinations of non-linear arithmetic constraints involving or-
dinary differential equations (ODEs), we provide a seamless integration
of safe numeric overapproximation of initial-value problems into a SAT-
modulo-theory (SMT) approach to interval-based arithmetic constraint
solving. Interval-based safe numeric approximation of ODEs is used as an
interval contractor being able to narrow candidate sets in phase space in
both temporal directions: post-images of ODEs (i.e., sets of states reach-
able from a set of initial values) are narrowed based on partial informa-
tion about the initial values and, vice versa, pre-images are narrowed
based on partial knowledge about post-sets.

In contrast to the related CLP(F) approach of Hickey and Wittenberg
[10], we do (a) support coordinate transformations mitigating the wrap-
ping effect encountered upon iterating interval-based overapproximations
of reachable state sets and (b) embed the approach into an SMT frame-
work, thus accelerating the solving process through the algorithmic en-
hacements of recent SAT solving technology.

1 Introduction

Hybrid systems consist of interacting discrete and continuous components, with
the continuous components often being naturally described by a combination of
ordinary differential equations (ODEs), formalizing time-dependent continuous
behavior, and arithmetic (in-)equations portraying autonomous jumps, invari-
ants, and the like. Automating state-exploratory analysis of hybrid systems does
thus call for effective manipulation of Boolean combinations of the above, where
the large discrete state spaces encountered in real systems and the dependence
of the continuous behavior on the current discrete state gives rise to extremely
large Boolean combinations. Within this paper, we suggest a SAT modulo the-
ory (SMT) approach for directly handling these large compositions of ODEs,
arithmetic (in-)equations, and conditions on discrete states.

⋆ This work has been partially funded by the German Research Council (DFG) as
part of the Transregional Collaborative Research Center “Automatic Verification
and Analysis of Complex Systems” (SFB/TR 14 AVACS, www.avacs.org).
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Our approach draws from three up to now distinct technologies, trying to
combine their virtues: (1) Solving large and complex-structured Boolean combi-
nations of arithmetic constraints by SAT modulo theory techniques (e.g., [8, 5]
These approaches are attractive as they transfer the algorithmic enhancements
that were instrumental to the enormous performance gains recently achieved
in propositional SAT solving, like non-chronological backtracking and conflict-
driven learning, to the mixed Boolean-arithmetic domain, as encountered in
hybrid systems [1]. (2) Interval-based safe numeric approximation of ODEs, as
suggested by, a.o., Moore, Lohner, and Stauning [12, 11, 14]. This approach pro-
vides a technique for safely overapproximating the image under an ODE of a
rectangular region in phase space and incorporates techniques based on coor-
dinate transformations for mitigating the wrapping effect encountered upon it-
erating interval-based overapproximations of reachable state sets. (3) CLP(F)
[10], offering a symbolic, constraint-based technology for reasoning about ODEs
grounded in (in-)equational constraints obtained from Taylor expansions, thus
being able to handle ODE parameters, error ranges in measurements, and other
natural uncertainties in modeling dynamic systems. Such effects are hard to deal
with, and hence often ignored, within numeric approaches to image computation.

Our design goal was to resolve the following shortcomings of the aforemen-
tioned techniques: First, the SMT framework, while being able to handle very
large constraint systems involving arithmetic (in-)equations, did previously lack
any native support for ODEs. Second, CLP(F) may fail to provide tight approx-
imations of the ODE solutions due to not counterfeiting the wrapping effect [12]
encountered in iterating interval-based, i.e. rectangular, overapproximations of
state sets. Furthermore, CLP(F) lacks the sophisticated means of pruning the
search space based on conflict analysis found in recent SMT solvers.1 Third, the
tighter approximations computed by interval-based safe numeric approximation
of ODEs, which have successfully been used in state-exploratory verification of
hybrid systems (e.g., in Hypertech [9]), lack the constraint propagation and rea-
soning functionality of the CLP(F) approach. Instead, their use was confined to
extrapolating state sets in an a priori fixed temporal direction of exploration.

To mitigate these restrictions, we suggest a direct, seamless integration of safe
approximation of ODEs into the iSAT arithmetic constraint solver [7], which is
an adaptation of the SMT framework to the undecidable domain of non-linear
arithmetic involving, a.o., inequations entailing transcendental functions. On the
theory solver side, iSAT is based on interval constraint propagation (ICP) for
arithmetic (in-)equations [2], which we extend to ODEs as follows. Interval-based
safe numeric approximation of ODEs is used as an interval contractor being able
to narrow candidate sets in phase space in both temporal directions: post-images
of ODEs (i.e., sets of states reachable from a set of initial values) are narrowed
based on partial information about the initial values and, vice versa, pre-images
are narrowed based on partial knowledge about post-sets.

1 Due to the generality of the CLP framework, the programmer may nevertheless
be able to simulate many of these pruning operators, albeit at the price of a very
imperative use of CLP.
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Structure of the paper. Section 2 explains syntax and semantics of the arithmetic
satisfiability problems we are going to address. In Sect. 3, we then start our
exposition of the solver algorithms with a description of the arithmetic SAT
solving technology we build upon. Thereafter, we provide a detailed exposition
of its extension to ODEs (Sect. 4) and benchmark results indicating feasibility
of the technique (Sect. 5).

2 Arithmetic SAT problems involving ODEs

Aiming at automated analysis of hybrid systems, our constraint solver addresses
satisfiability of non-linear arithmetic constraints, including ODEs, over real-
valued variables RV plus Boolean variables BV for encoding the control flow.
The user thus may input constraint formulae built from quantifier-free (in-)equa-
tional constraints over the reals, from ODEs, and from propositional variables
using arbitrary Boolean connectives. The atomic (in-)equational constraints are
relations between potentially non-linear terms involving transcendental func-
tions, like sin(x+ωt)+ye−t ≤ z +5. The ODE constraints define the derivatives
of the continuous variables w.r.t. time. They are given by equational constraints

of the form dxi(t)
dt

= fi(~x(t)), where the ODE-defined variables xi constitute

a vector ~V over a subset of RV and fi are potentially non-linear expressions
over ~V . Additionally flow invariants of the form l ≤ xi ≤ u can be given that
constrain the range of the variables in V during a continuous flow.2

An input model comprises predicative encodings of the initial state set init,
the transition relation trans over current-step (x) and next-step variables (x′),
and the (unsafe) target state. ODE constraints can only occur in the transition
relation where they define the relationship between two successive valuations
of the variables in V by constraining the possible trajectories in between the
steps. In order to perform bounded model checking (BMC) [3] on such model
encodings, the transition relation is unwound k times and conjoined with the
predicates that encode initial and target states, yielding a formula

φ = init(~x(0)) ∧ trans(~x(0), ~x(1)) ∧ · · · ∧ trans(~x(k−1), ~x(k)) ∧ target(~x(k)) (1)

that is satisfiable iff a state satisfying target is reachable in k steps. Each variable

xi thus results in k + 1 instances x
(0)
i , x

(1)
i , . . . , x

(k)
i . If φ is satisfied by the valu-

ations of all instances for all variables occuring in φ, these valuations represent
the evolution of the system during a particular trace. Like all other subexpres-
sions of the transition system, also the ODE constraints are instantiated k times.
The resulting formula φ thus contains ODE constraints over disjoint sets of vari-
able instances V (0), . . . , V (k), where each V (i) contains those instances whose
ODE-defined trajectories emerge from the valuations in the i-th step.

As the ODEs that govern the hybrid-system behavior depend on the cur-
rent discrete state of the system, such ODE constraints are relativized by the

2 We define a fixed ordering over the variables from RV ∪BV s.t. we can exchange the
vector ~V = (x1, . . . , xn)T of unique variables with the set V = {x1, . . . , xn} ⊆ RV

and vice versa.
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introduction of propositional “triggers”, such that traces need only obey the pre-
/post-relation defined by those ODE constraints and the flow invariants whose
triggers are forced to true by predicates formalizing the interplay between dis-
crete state and continuous behavior. Several of these trigger variables together
can in principle activate ODE constraints that describe conflicting dynamics for
the same unwinding depth of the transition relation. To avoid this, constraints
can be added such that only one type of dynamics may be active at a time by a
simple investigation of the variables that are influenced by the triggers.

Solver-internal constraint syntax. By the front-end of our solver, constraint for-
mulae are rewritten into equi-satisfiable quantifier-free formulae in conjunctive
normal form, with atomic propositions ranging over propositional variables and
(in-)equational constraints confined to a form resembling three-address code.
This rewriting is based on the standard mechanism of introducing auxiliary
variables for the values of arithmetic sub-expressions and of logical sub-formulae,
thereby eliminating common sub-expressions and sub-formulae through re-use
of the auxiliary variables, thus reducing the search space of the SAT solver and
enhancing the reasoning power of the interval contractors used in arithmetic
reasoning [2]. Thus, the internal syntax of constraint formulae is as follows:

formula ::= {clause ∧}∗clause
clause ::= ({atom ∨}∗atom) | (bound ⇒ ode ∧ flow invar)
atom ::= bound | equation

bound ::= variable ∼ rational constant

variable ::= real var | boolean var

equation ::= real var = real var bop real var | real var = uop real var

ode ::= {dreal var

dt
= term ∧}∗ dreal var

dt
= term

flow invar ::= {bound ∧}∗ bound

where ∼∈ {<,≤, >,≥}, the non-terminals bop, uop denote the binary and unary
operator symbols (including arithmetic operators such as + or sin), and term
the terms over real-valued variables built using these.

Semantics. Such constraint formulae are interpreted over valuations σ ∈ (BV total−→

B)× (RV total−→ R), where BV is the set of Boolean and RV the set of real-valued
variables, being the instances of the variables that result from the BMC un-
winding depicted in (1). B is identified with the subset {0, 1} of R such that
bounds on a Boolean variable v correspond to literals v or ¬v. The definition
of satisfaction is standard: a constraint formula φ is satisfied by a valuation iff
all its clauses are satisfied. A disjunctive clause is satisfied iff at least one of its
atoms is satisfied. Satisfaction of atoms is wrt. the standard interpretation of
the arithmetic operators and the ordering relations over the reals. We assume
all arithmetic operators to be total and therefore extend their codomain (as well
as, for compositionality, their domain) with a special value ℧ 6∈ R (“undefined”)
such that the operators manipulate values in R℧ = R ∪ {℧}. The comparison
operations on R are extended to R℧ in such a way that ℧ is incomparable to
any real number, that is, c 6∼ ℧ and ℧ 6∼ c for any c ∈ R and any relation
∼∈ {<,≤, =,≥, >}. ODE constraints are satisfied if there exists for each BMC
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unwinding depth i a solution of the ODE system d~x(t)
dt

= ~f(~x(t)) where the ac-
tivated triggers of that BMC depth i define which ODE constraints are used as
components f1, . . . , fn. Such a solution function ~x(t) satisfies the ODE up to a
user-specified horizon of interest, for its starting point ~x(0) = σ(~x(i)) holds, i.e.
the trajectory emerges from the current valuation of ~x on BMC depth i, and
there exists a τr ∈ [0, horizon] such that ~x(τr) = σ(~x(i+1)), i.e. the trajectory
eventually reaches the next value of ~x in the trace.

Interval-based overapproximation. Instead of real-valued valuations of variables,
our constraint solving algorithm manipulates interval-valued valuations ρ ∈
(BV total−→ IB) × (RV total−→ IR), where IB = 2B and IR is the set of convex subsets
of R℧.3 Slightly abusing notation, we write ρ(l) for ρIB

(l) when ρ = (ρIB
, ρIR

)
and l ∈ BV , and similarly ρ(x) for ρIR

(x) when x ∈ RV . For a vector of ODE-

defined variables ~V = (x1, . . . , xn)T , we write ρ(~V ) as an abbreviation for the
vector (ρ(x1), . . . , ρ(xn))T . In the following, we occasionally use the term box
synonymously for interval valuation. If both ζ and η are interval valuations then
ζ is called a refinement of η iff ζ(v) ⊆ η(v) for each v ∈ BV ∪ RV .

In order to lift a binary operation ◦ and its partial inverses to sets, we define

m •1 n = {x | ∃y ∈ m, z ∈ n : x = y ◦ z},

m •2 n = {y | ∃x ∈ m, z ∈ n : ((x = y ◦ z) ∨ (y = ℧ ∧ ∄y′ ∈ R : x = y′ ◦ z))}

m •3 n = {z | ∃x ∈ m, y ∈ n : ((x = y ◦ z) ∨ (z = ℧ ∧ ∄z′ ∈ R : x = y ◦ z′))}

and similarly for unary ◦. Note that these are essentially the images of the
argument sets under the relation {(x, y, z) | x = y ◦ z} when substituting the
respective arguments.

As these operations can in general not be carried out exactly using floating-
point arithmetic, we lift the set-valued operators to (computer-representable)
intervals by assigning to each set-valued operation • a conservative interval ap-
proximation •̂ which satisfies i1•̂i2 ∈ IR and i1•̂i2 ⊇ ii • i2 for all intervals i1 and
i2 [13]. Note that the definition of an interval extension does not specify how
to exactly lift a base operation • to intervals, but leaves some design choice by
permitting arbitrary overapproximations. For the sake of reasoning power, i1•̂i2
should be chosen such that it provides an as tight as possible overapproximation
of i1 • i2. This means that in practice i1•̂i2 is the interval hull

⋂

i∈IR,i⊇i1•i2
i —

i.e. the smallest interval in IR that contains i1 • i2 entirely— extended by some
outward rounding to compensate for the imprecision of computer arithmetic and
the finiteness of the set of floating-point numbers. We define narrowing operators
π•̂ for each of the relations introduced above. For a constraint x = y◦z, we define
the operators π•̂1(ρ(x)) := ρ(x) ∩ (ρ(y)•̂1ρ(z)), π•̂2(ρ(y)) := ρ(y) ∩ (ρ(x)•̂2ρ(z)),
and π•̂3(ρ(z)) := ρ(z) ∩ (ρ(x)•̂3ρ(y)). The essential characteristics of these nar-
rowing operators, which are borrowed from the context of hull consistency [2], is
that they narrow the valuation ρ by pruning away only parts of the search space
that cannot contain any satisfying valuations.

3 Note that this definition covers the open, half-open, and closed intervals over R,
including unbounded intervals, as well as the union of such intervals with {℧}.
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resulting
contracted postbox

x1

given postbox

prebox

time of interest

horizon

time

Fig. 1. Find trajectories that emerge from the prebox and eventually reach the postbox

In order to extend the concept of interval-based narrowing operators to
ODEs, we first introduce the following definitions. We consider an ODE problem

P :=
(

d~x
dt

(t) = ~f(~x(t)), ~Xpre, ~Xpost, ~Xflow

)

(2)

where d~x
dt

(t) = ~f(~x(t)) is an n-dimensional system of time-invariant differential

equations with components dxi

dt
(t) = fi(x1(t), . . . , xn(t)), with i ∈ {1, . . . , n}

and ~Xpre, ~Xpost, and ~Xflow are the prebox , postbox , and flowbox respectively,
which are vectors of real-valued intervals for the variables x1, . . . , xn. The flowbox
is defined by the conjunction of activated flow constraints for the BMC depth i

to which P belongs. The prebox is given by ~Xpre = ρ((x
(i)
1 , . . . , x

(i)
n )T ) and the

postbox by the corresponding next values ~Xpost = ρ((x
(i+1)
1 , . . . , x

(i+1)
n )T ). This

relationship is illustrated in Fig. 1.

Similarly to π•̂ for equational atoms of φ, we define narrowing operators for
the ODE problem P that results from the active triggers on BMC depth i:

πP→( ~Xpost) := ~Xpost ∩

ε
({

~y
∣
∣
∣∃τr ∈ [0, horizon], ∃~x : [0, τr] → Rn : ~x(0) ∈ ~Xpre

//~x(t) emerges
from prebox

∧ ∀τ ∈ [0, τr] :
d~x

dt
(τ) = ~f(~x(τ)) //is a solution

∧ ~y = ~x(τr) ∧ ∀τ ∈ [0, τr] : ~x(τ) ∈ ~Xflow

})
//eventually reaches

~y without leaving
the flowbox

and similarly for the inverse direction

πP←( ~Xpre) := ~Xpre ∩

ε
({

~y
∣
∣
∣∃τr ∈ [0, horizon], ∃~x : [0, τr] → Rn : ~x(0) = ~y //~x(t) emerges

from ~y

∧ ∀τ ∈ [0, τr] :
d~x

dt
(τ) = ~f(~x(τ)) //is a solution

∧ ~x(τr) ∈ ~Xpost ∧ ∀τ ∈ [0, τr] : ~x(τ) ∈ ~Xflow

})
//reaches postbox

without leaving
flowbox

where ε is an overapproximating interval enclosure of its argument. As all valu-
ations that are reachable from the prebox are enclosed by the narrowed postbox
and all starting points of trajectories that can eventually reach the postbox are
enclosed by the narrowed prebox, no solution of P can be lost by applying the
operators πP→ and πP←. This mostly declarative description of a pruning operator
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for ODEs, that does only remove non-solutions from the pre- and postbox, is
complemented by a presentation of its practical implementation in Sect. 4.

3 Arithmetic constraint solving with the iSAT algorithm

The approach to hybrid systems verification pursued in this paper is to translate
the reachability problem of a hybrid system into a satisfiability problem of a
constraint system. The BMC formula (1) in the form of disjunctive clauses over
Boolean literals, arithmetic constraints, and ODEs is automatically generated
from the model description and then becomes input for the satisfiability check.

For a purely discrete transition system, the BMC formula φ would be proposi-
tional. The common approach to solve such SAT problems in the Boolean domain
is the DPLL [4] procedure that performs a (often non-chronological) backtrack
search through the solution space by alternating decision and deduction steps.
Decisions are assignments of true or false to a still undecided variable; deduc-
tions consist of finding atoms that have become the last remaining free atom of
a clause in which all other atoms have become false. These atoms are satisfied
by assigning them to true, called a unit propagation (UP). Their new valuations
are subsequently propagated to all the occurrences of the respective literals, po-
tentially triggering further UPs. When all UPs have been performed and the
formula still has no clause entirely assigned to false, a decision is conducted,
selecting one of the free variables. As soon as a clause becomes unsatisfiable by
all its atoms being false, a decision and its implied UPs are undone and the
search thus continued from a higher level in the search tree.

In [7], the iSAT algorithm has been proposed to lift DPLL to the domain
of non-linear arithmetic problems with complex Boolean structure. The basic
additions to DPLL are, first, that variables are no longer interpreted by Boolean
intervals in IB only, but — depending on type — also by real-valued intervals
in IR and, second, that interval constraint propagation (ICP) by the narrowing
operators for equations (cf. previous section) joins UP as a deduction mechanism.

Initially, all variables are interpreted by intervals coinciding to their specified
ranges, e.g. [−133, 450] for a real-valued variable of that range and {false, true}
for a Boolean variable. To simplify the exposition, we do also consider all atoms
occurring in the formula to be Boolean variables. As in DPLL, progress in con-
structing the proof tree is now made by applying decision and deduction steps.
Akin to DPLL, decisions are simply taken by splitting the interval which bounds
the current valuation of a variable x into two disjoint, non-empty subintervals
(e.g. at the midpoint) and recursing the search on one of them. Deduction is
more general than in DPLL, applying the following forms of propagation rules:

1. As in DPLL, unit propagation sets the last remaining atom in a clause to
true if all others have been assigned false. For the sake of efficiency, watch
lists are applied for detecting this.

2. If an equational atom x = y ◦ z or x = ◦y has been assigned true, its associ-
ated narrowing operators π•̂i can be used to chop off valuations violating the
equational constraint, thus narrowing the intervals interpreting x, y, and z.
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For efficiency, this interval constraint propagation is triggered by watch lists
observing whether one of the variables of an equational atom has changed.

3. If a bound atom x ∼ c becomes assigned true, which is detected by means
of the watch lists, the domain of x is intersected with {u ∈ R | u ∼ c}.

4. If an equational or bound atom becomes inconsistent in the sense that ap-
plication of its associated narrowing rules would yield an empty interval for
some variable, the atom is assigned false if it has not been assigned true

previously. In the latter case, a conflict arises which manifests itself by one
of the ICP propagation rules 2. and 3. assigning an empty interval.

As in DPLL, preference over decisions is given to deduction. Exploiting the sim-
ilarity of this algorithm to DPLL by incorporating and generalizing the conflict
analysis and conflict-driven learning algorithms of modern DPLL-based SAT
solvers, together with non-chronological backtracking, this yields a solver for
large and complex-structured mixed Boolean-arithmetic constraint systems in-
volving non-linear and even transcendental arithmetic operations [7]. Applying
deductions and decisions until a sufficiently small consistent box has been found
or absence thereof has been proved, it decides constraint formulae provided they
are robust in the sense that some open set of solutions exists, if any.

By integrating the narrowing operators described in the following section,
we extend this algorithm to check the consistency of and to deduce new bounds
from ODE constraints, thereby directly handling them within the BMC formula.

4 Contracting pre- and postimages of ODE trajectories

In order to handle differential equations directly, safe overapproximations of their
solution sets must be generated during the deduction phase. We consider an ODE
Problem P of the form (2). As motivated in Sect. 2, the goal of calling the ODE
solver is to enclose all trajectories of P that are (sufficiently often) differentiable
solution functions ~x, emerging from the prebox, eventually reaching the postbox,
and staying in the flowbox during their evolution.

These trajectories then allow to define a contraction ~X ′post ⊆ ~Xpost that
constitutes new bounds on the variables of the postbox which can subsequently
be propagated through the other constraints and thus cause further deductions.
The contracted set ~X ′post must contain all points that are reachable by the

trajectories and are included in the given ~Xpost. The postbox thus defines the
set of points which are interesting to the surrounding deduction. We call the set
of those points of time for which trajectories exist that have a valuation inside
~Xpost (and thereby also in ~X ′post) the time of interest (ToI).

By multiplying the right hand side of the ODE, i.e. ~f(~x(t)), with −1 and

using ~Xpost in place of ~Xpre and vice versa, the inverse problem

P−1 :=
(

d~x
dt

= −~f(~x(t)), ~Xpost, ~Xpre, ~Xflow

)

is generated. P−1 then allows to also contract ~Xpre into ~X ′pre ⊆ ~Xpre by prop-
agating the postbox backwards through the ODE problem using the same ToI.
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Enclosure mechanism. In order to enclose these trajectories, we first generate
by means of symbolic derivation and simplification rules the truncated Taylor
series of the unknown exact solution up to the user-specified order m and the
corresponding Lagrange remainder term of order m + 1 that will be used to
enclose all possible truncation errors. These symbolic terms need only to be
generated once for all dimensions i ∈ 1, . . . , n of the ODE problem P :

xi(tk + hk) =

m∑

j=0

h
j
k

j!

djxi

dtj
(tk)

︸ ︷︷ ︸

Truncated Taylor series

+
hm+1

k

(m + 1)!

dm+1xi

dtm+1
(tk + θhk)

︸ ︷︷ ︸

Lagrange remainder with θ ∈ ]0, 1[

Essentially following the approach of Lohner [11], each enclosure step from
tk to tk+1 consists of two tasks: First, we generate a rough overapproximation
of the trajectories (“bounding box”) along with a suitable stepsize hk for which
the bounding box guarantees to enclose all trajectories. Second, we evaluate the
Taylor series over the calculated box at tk (with the box at t0 being the given
prebox) and the stepsize hk and calculate interval bounds for the Lagrange re-
mainder over the bounding box using outward rounding for interval calculations
as described in Sect. 2. The first step, i.e. finding a rough a-priori enclosure of the
solution set over the interval of time from [tk, tk+hk] is based on a theorem given
by Lohner [11, p. 263]. Extending the Picard-Lindelöf existence and uniqueness
theorem for initial value problems, it allows to easily decide whether a given box
encloses the trajectories emerging from a box ~Xk over [tk, tk + hk]. We use this
property in a greedy search algorithm that (starting from the local starting box
~Xk) extends the box into one direction at a time and checks whether the stepsize
for which this box guarantees to be a bounding box has grown.

We call the vector of truncated Taylor series ~TT ( ~Xk, hk) =






∑m
j=0

h
j

k

j!
dj−1f1

dtj−1 ( ~Xk)
...

∑m
j=0

h
j
k

j!
dj−1fn

dtj−1 ( ~Xk)







⊇







∑m
j=0

h
j

k

j!
dj−1f1

dtj−1 (~x(tk))
...

∑m
j=0

h
j
k

j!
dj−1fn

dtj−1 (~x(tk))







=







∑m
j=0

h
j

k

j!
djx1

dtj (tk)
...

∑m
j=0

h
j
k

j!
djxn

dtj (tk)







with ~Xk ⊇ ~x(tk) being an overapproximating enclosure of the exact solution set

at tk. The first enclosure at t0 = 0 is given by the prebox: ~X0 = ~Xpre = ~x(t0).

Similarly we call the vector of the error enclosure terms ~EE( ~BBk, hk) =







h
m+1
k

(m+1)!
dmf1

dtm ( ~BBk)
...

h
m+1
k

(m+1)!
dmfn

dtm ( ~BBk)








⊇








h
m+1
k

(m+1)!
dm+1x1

dtm+1 (tk + θhk)
...

h
m+1
k

(m+1)!
dm+1xn

dtm+1 (tk + θhk)








where ~BBk ⊇ ~x([tk, tk +hk]) is a bounding box that safely overapproximates all
trajectories over the interval [tk, tk + hk].

Calculating the interval overapproximation of the symbolically given trun-
cated Taylor term and adding the safely enclosed error remainder yields a box
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(a)

enclosure at t2

enclosure at t1

enclosure at t0

x

y

(b)

y

[c, d]

x[a, b]

[r, s]

p

[t, u]

q

Fig. 2. (a) wrapping effect, (b) coordinate transformation (origin shifted for clarity)

that encloses all trajectories at the next point of time tk+1 = tk + hk:

~Xnaive
k+1 ⊇ ~TT ( ~Xk, hk) + ~EE( ~BBk, hk) (3)

This “naive” enclosure could be iterated until the given horizon is reached. If
instead of (3) we evaluated

~Xnaive
[k,k+1] ⊇

~TT ( ~Xk, [0, hk]) + ~EE( ~BBk, [0, hk])

and generated the union

~Xnaive
post =

⋃

k∈{0,...,q}

~Xnaive
[k,k+1], with tq ≥ horizon

we would actually receive a correct enclosure of all possible trajectories emerging
from ~Xpre over [t0, tq]. However, a fundamental problem— the so called wrapping
effect —arises that renders these enclosures useless in most cases.

Consider the example of a harmonic oscillator that is used by Moore [12] to
illustrate the wrapping effect: dx

dt
= y ∧ dy

dt
= −x. Manually calculating the

exact solutions for a box of initial values yields the behaviour depicted in Fig. 2.
The solution sets at the shown tk expose a rotation without any change in the
size of the solutions. Using the naive enclosure mechanism, we do however have
to enclose the rotated solution sets with boxes that are parallel to the coordinate
axes and thereby wrap in points that are not part of the solution. By iterating
this method we consequently have to calculate enclosures for all those trajectories
emerging from these wrapped points. This leads to an exponential blow up of
the enclosures thus causing often inacceptably coarse overapproximations [12].

The standard approach to mitigate this problem is given already by Moore:
In order to keep the enclosure tight, the coordinate system is changed in such a
way that it minimizes the wrapping effect, i.e. the coordinate system with respect
to which the enclosure boxes are given is rotated (and even sheared) along with
the solution set and thereby allows to enclose the solutions much more tightly.

By orthogonalizing the transformation matrix used to conduct the coordinate
transformation (QR method), Lohner successfully avoids this matrix to become
singular and therefore the transformation to fail [11]. In our prototypical imple-
mentation, a simple threshold on the minimum angle of the coordinate axes is
used to decide whether that QR conditioning is applied or not.
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We modify the naive method sketched above by first creating a well-suited
coordinate system for the next step at tk+1. In order to achieve this, we take

the midpoints of the surfaces defined by ~Xk and calculate approximations of
their image points at tk+1. The connections between the resulting points are
an approximation of the optimal coordinate system for an enclosure at tk+1.
The enclosure for t0 is given wrt. the standard coordinate system. Coordinate
transformations are achieved by performing matrix multiplication with a trans-
formation matrix T whose columns are the images of the standard base under the
coordinate transformation and with its inverse T−1, depending on the direction
of the transformation. In order to protect the overapproximation guarantees,
we need to ensure that I ∈ T · T−1, where I is the unit matrix. We therefore
iteratively extend an approximative T−1 until I ∈ T · T−1 holds.

Instead of interval enclosures ~Xk with respect to the standard base we store
interval enclosures ~Uk with respect to the coordinate system defined by the
transformation matrices Tk and its safely enclosed inverse T−1

k . In order to yield

a wrapped enclosure at tk, one can evaluate ~Xk = Tk · ~Uk with safe interval
extended operators. As we have symbolic representations of ~TT and ~EE, we can
avoid this internal wrapping during evaluation by symbolically simplifying

~Uk+1 = T−1
k+1 ·






TT1(Tk · ~Uk, hk)
...

TTn(Tk · ~Uk, hk)




 + T−1

k+1 ·






EE1( ~BBk, hk)
...

EEn( ~BBk, hk)






prior to its evaluation. By intersecting the intermediate results ~Xk and the
bounding boxes with ~Xflow, we prune off some of those trajectories that are
no longer interesting after the k-th step because they then left the flowbox, we
currently do however not use a coordinate-transformed version of the flowbox
to also prune the boxes ~Uk that are used for iteration.We can stop iterating the
method before reaching the horizon when ~Xk ∩ ~Xflow becomes empty.

Again, replacing hk with [0, hk] and subsequent generation of the union of the
local enclosures from t0 to tq leads to an enclosure of all trajectories over [t0, tq].

By locally intersecting this enclosure with ~Xpost, the tightened postbox ~X ′post

can be generated. Enclosing all subintervals of time with non-empty intersections
of ~Xk and ~Xpost, yields an overapproximation of the time of interest.

As seen above, this method can generate almost optimal enclosures for solu-
tion sets that are affine images of the prebox. Lohner points out that we cannot
expect this method to work for nonlinear ODEs as good as it works in the case of
linear ODEs [11], whose solution sets are always given by affine transformations.
Though the method has no fundamental restriction to linear ODEs, coordinate
transformations of the described flavor are in general only effective in the case of
linear ODEs. The coarseness of the enclosures of nonlinear ODEs thus strongly
depends on whether the ODE itself causes a contraction of the solution sets that
is stronger than the expansion caused by the wrapping effect.

Integration into the iSAT algorithm. In contrast to arithmetic constraints, the
method described above to perform enclosures of ODE trajectories requires a
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fully defined ODE problem that normally consists of more than one ODE con-
straints. These are activated by trigger variables as described in Sect. 2. Prior
to executing the enclosure algorithm it is thus necessary to collect the activated
ODE constraints and construct the ODE problems they define. During this first
step the active ODE constraints are grouped by their BMC unwinding depths
and common variables. For a BMC depth with active ODE constraints, the ODE
constraints can either be grouped into one ODE problem or (in order to reduce
dimensionality) partitioned into essentially disjoint ODE problems which only
share the same time of interest.

We have embedded the ODE enclosure mechanisms into the constraint solver
iSAT [7] as follows: whenever constraint propagation based on equations and
bounds cannot perform any further arithmetic deductions, we generate the ODE
problems and their inverses for one BMC unwinding depth. Enclosures are then
calculated for them, in a round-robin fashion. Thereby, new bounds on the post-
box deduced by forward propagation through an ODE problem P can subse-
quently be used to also tighten the startbox by propagation through its inverse
P−1 and vice versa. When the deduced bounds cease to become tighter, they
are returned to interval constraint propagation to allow further arithmetic prop-
agations. During ODE-based interval narrowing, the enclosure mechanism may
encounter a conflict when no trajectory connecting the pre- and postbox exists.
In that case, a conflict clause is added to the constraint system, such that the
solver learns to never again assign this combination of activated triggers and
boxes. Deductions from the ODE problems and from the arithmetic constraints
thereby propagate new bounds through the entire constraint system. Only if nei-
ther arithmetic nor ODE deductions are possible, a decision step is performed.

5 First experimental results

In order to test the presented ideas, we have implemented the method described
in the previous section by straightforward integration into iSAT. This integra-
tion is prototypical, lacking any optimizations like reuse of inferences along the
isomorphic copies of the transition relation in a BMC problem [6]. Given the
extremely high computational cost of computing an interval enclosure of an
ODE, such mechanisms for copying inferences across isomorphic sub-formulae
rather than recomputing them should provide large speedups. Without such
optimizations, performance figures like runtime and memory consumption are
not indicative of the actual performance of the algorithm. The current imple-
mentation can, however, serve as a proof of concept that a tight integration
of interval-based ODE-enclosures as yet another interval narrowing operator
in interval constraint propagation provides a viable alternative to conventional
schemes of hybrid system analysis, where computation of ODE images and tran-
sition images are strictly separate phases. When reporting on benchmarks, we
will therefore concentrate on (a) the precision of the enclosures generated and
(b) the number of hand-overs between equation-based interval constraint prop-
agation (the source of the equations being the transitions and state invariants
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Fig. 3. Damped oscillator. (a) enclosures at intermediate time instants, (b) interval en-
closures obtained with and without coordinate transformation (inner/outer sequence)

of the hybrid system) and ODE-enclosure-based interval constraint propagation.
Both figures are indicating effectiveness of the proposed strategy.

Damped oscillator. Tightness of the interval enclosures, as expected for at least
linear ODEs, can be demonstrated on a damped harmonic oscillator dx

dt
= y−0.8·

x and dy
dt

= −x + 0.3 · y. While mere interval-based numeric overapproximation
used in previous ICP-based approaches to reasoning about ODEs (e.g., [10])
does not accurately reflect the damping, yielding enclosures like the outer one
in Fig. 3 (b), our approach yields a reasonably exact overapproximation of the
pre-post-relation mediated by the ODE (Fig. 3 (a) and (b), inner sequence).

Bouncing ball. The bouncing ball is a simple, classical example of a hybrid sys-
tem, suitable as a test for the handover between the different interval narrowing
mechanisms. In free fall, height h and speed v of the ball are governed by dh

dt
= v

and ds
dt

= −g where g is the gravitational constant. Whenever the ball hits the
ground at h = 0, it bounces by discontinuous change of the sign of v. Searching
for a ground impact at a time t ≥ 8 starting from a limited start height, solving
required 664 hand-overs between equation-based and ODE-based interval nar-
rowing, entailing the computation of 1754 ODE enclosures which delivered 55
tightened intervals and 5 conflicts4, the latter being memorized through conflict-
driven learning and thus eliminating multiple candidate traces.

6 Conclusion

Within this paper, we have presented a seamless integration of safe numeric
integration of ODEs into SAT-modulo-theory (SMT) solving. From the practical
point of view, such an integration extends the scope of SMT algorithms from
mixed arithmetic-Boolean problems involving relations defined by arithmetic
inequations to problems additionally comprising relations defined by initial value
problems of ODEs, thus permitting the direct application of SMT to hybrid
systems without the need for a preprocessing step replacing ODEs with pre-
post-relations defined by (in-)equations. Technically, it involves the embedding

4 i.e., proofs that the gap between the set of endpoints of one and startpoints of
another partial trace cannot be bridged by any continuous trajectory
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of interval-based safe numeric approximation of ODE images and ODE pre-
images as a further rule for theory propagation in SMT solving.

First experiments show that such an integration is technically feasible and
delivers the desired automated deduction system for reasoning about hybrid sys-
tems, yet do also indicate that the computational cost of the individual ODE-
related deductions is extremely high. The next release will thus drastically reduce
their frequency through proven methods for reuse of deductions within isomor-
phic subformulae [6] in order to attain performance competitive with existing
tools optimized for the domain.
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