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Abstract

The analysis of hybrid systems exhibiting probabilistic behaviour is notoriously difficult. To enable mech-
anised analysis of such systems, we extend the reasoning power of arithmetic satisfiability-modulo-theory
solving (SMT) by a comprehensive treatment of randomized (a.k.a. stochastic) quantification over discrete
variables within the mixed Boolean-arithmetic constraint system. This provides the technological basis for a
fully symbolic analysis of probabilistic hybrid automata. Generalizing SMT-based bounded model-checking
of hybrid automata [2,9], stochastic SMT permits the direct and fully symbolic analysis of probabilistic
bounded reachability problems of probabilistic hybrid automata without resorting to approximation by
intermediate finite-state abstractions.
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Over the last decade, formal verification of digital systems has evolved from an

academic subject to an approach accepted by industry, with dozens of commercial

tools now available. Among the most successful verification methods for finite-state

systems is bounded model checking (BMC), as suggested by Groote et al. in [11] and

by Biere et al. in [3]. The idea of BMC is to encode the next-state relation of a

system as a propositional formula, to unroll this to some given finite depth k, and to

augment it with a corresponding finite unravelling of the tableau of (the negation

of) a temporal formula in order to obtain a propositional SAT problem which is

satisfiable if and only if an error trace of length k exists. Enabled by the impressive

1 This work has been partially supported by the German Research Council (DFG) as part of the
Transregional Collaborative Research Center “Automatic Verification and Analysis of Complex Systems”
(SFB/TR 14 AVACS, www.avacs.org).
2 Email: fraenzle@informatik.uni-oldenburg.de , teige@informatik.uni-oldenburg.de
3 Email: hermanns@cs.uni-sb.de

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:fraenzle@informatik.uni-oldenburg.de
mailto:teige@informatik.uni-oldenburg.de
mailto:hermanns@cs.uni-sb.de


M. Fränzle, H. Hermanns, and T. Teige

gains in performance of propositional SAT checkers in recent years, BMC can now

be applied to very large finite-state designs.

Though originally formulated for discrete transition systems, the concept of

BMC also applies to hybrid discrete-continuous systems. The BMC formulae arising

from such systems comprise complex Boolean combinations of arithmetic constraints

over real-valued variables, thus entailing the need for satisfiability-modulo-theory

(SMT) solvers over arithmetic theories to solve them. Such SMT procedures are

thus currently in the focus of the SAT-solving community (e.g., [8]), as is their

application to and tailoring for BMC of hybrid systems (e.g., [2,9]).

The scope of these procedures, however, is confined to purely Boolean queries

of the form “can the system ever exhibit an undesirable behavior?”, whereas re-

quirements for safety-critical systems frequently take the form of bounds on error

probability, requiring the residual probability of engaging into undesirable behav-

ior to be below an acceptable threshold. Automatically answering such queries

requires, first, models of hybrid behavior that are able to represent probabilistic

effects like component breakdown and, second, algorithms for state space traversal

of such hybrid models.

In the context of hybrid systems augmented with probabilities, a wealth of mod-

els has been suggested by various authors. These models vary with respect to the

degree of continuous dynamics, the support for random phenomena, and the degree

to which they support non-determinism and compositionality. The cornerstones

are formed by probabilistic hybrid automata, where state changes forced by con-

tinuous dynamics may involve discrete random experiments [15], piecewise deter-

ministic Markov processes [7], where state changes may happen spontaneously in

a manner similar to continuous-time Markov processes, and stochastic differential

equations [1], where, like in Brownian motion, the random perturbation affects the

dynamics continuously. In full generality, stochastic hybrid system (SHS) models

can cover all such ingredients [6]. While such models have a vast potential of appli-

cation, results related to their analysis and verification are limited, and often based

on Monte-Carlo simulation [4,12]. For certain subclasses of piecewise determinis-

tic Markov processes, of probabilistic hybrid automata, and of stochastic hybrid

systems, reachability probabilities can be approximated (e.g. [15,5,13]).

In [10], we presented a technology that saves the virtues of SMT-based BMC,

namely the fully symbolic treatment of hybrid state spaces, while advancing the rea-

soning power to probabilistic models and requirements. While the technique is more

general, the current paper focuses on depth-bounded reachability of discrete-time

probabilistic hybrid automata. With respect to the stochastic dynamics considered

this model is very simple and thus constitutes a good attack point to pioneer effec-

tive model checking techniques for probabilistic hybrid systems, harvesting recent

advances in depth-bounded reachability analysis for ordinary hybrid systems. Albeit

being simple, the model of probabilistic hybrid automata has interesting practical

applications [15].

In order to achieve this, in [10] we introduced stochastic satisfiability modulo the-

ory (SSMT) as the unification of stochastic propositional satisfiability (SSAT) [14]

and satisfiability modulo theory. The SSMT framework deals with existential and

randomized quantification of finite-domain variables. An SSMT formula is specified
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Fig. 1. A probabilistic hybrid automaton H.

by a quantifier prefix and an SMT formula, e.g. Φ = ∃x ∈ {0, 1}

R

〈(0,0.6),(1,0.4)〉y ∈

{0, 1} : (x > 0 ∨ 2a + 4b ≥ 3) ∧ (y > 0 ∨ 2a + 4b < 1). The value of a

variable bound by an existential quantifier, as in ∃x ∈ {0, 1}, can be set ar-

bitrarily, while the value of a variable bound by a randomized quantifier, as in

R

〈(0,0.6),(1,0.4)〉y ∈ {0, 1}, is determined stochastically by the corresponding distri-

bution, here 〈(0, 0.6), (1, 0.4)〉. For instance,

R

〈(0,0.6),(1,0.4)〉y ∈ {0, 1} means that

the variable y is assigned the value 0 or 1 with probability 0.6 or 0.4, respec-

tively. The solution of an SSMT problem Φ is a strategy to assign values to the

existential variables that maximizes the overall satisfaction probability of Φ. Since

the quantifier prefix of Φ allows an alternating sequence of existential and ran-

domized quantifiers, the value of an existential variable depends on the values of

the randomized variables with earlier appearance in the prefix. Consequently, in

general such a solution is a tree of assignments to the existential variables de-

pending on the values of preceding randomized variables. For the SSMT formula

Φ = ∃x ∈ {0, 1}

R

〈(0,0.6),(1,0.4)〉y ∈ {0, 1} : ϕ, the goal is to determine the maximum

probability s.t. there is a value for x s.t. for random values of y the SMT formula ϕ

is satisfiable. More formally, the maximum probability of satisfaction Pr(Φ) of an

SSMT formula Φ is defined recursively as follows, where ϕ denotes the SMT formula.

1. P r(ϕ) = 0 if ϕ is unsatisfiable, and 1 otherwise.

2. P r(∃xi ∈ dom(xi) . . . Qnxn ∈ dom(xn) : ϕ)

= maxv∈dom(xi) Pr(Qi+1xi+1 ∈ dom(xi+1) . . . Qnxn ∈ dom(xn) : ϕ[v/xi]).

3. P r(

R

di
xi ∈ dom(xi) . . . Qnxn ∈ dom(xn) : ϕ)

=
∑

(v,p)∈di
p · Pr(Qi+1xi+1 ∈ dom(xi+1) . . . Qnxn ∈ dom(xn) : ϕ[v/xi]).

In [10], we proposed an algorithm for solving SSMT problems in the sense of deter-

mining the maximum probability of satisfaction. This algorithm extends solvers for

SSAT [14] in much the same way that DPLL(T) solvers (e.g., [8]) extend classical

DPLL SAT solvers. First experimental results prove the concept of our approach

and show the impact of algorithmic acceleration techniques for SSMT problems.

A discrete-time probabilistic hybrid automaton (PHA) as described, e.g., in [10]

extends the notion of a hybrid automaton, where the non-deterministic selection of

a transition is enriched by a probabilistic choice according to a distribution over

variants of the transition. I.e., each transition carries a (discrete) probabilistic dis-

tribution. Each probabilistic choice within such a distribution leads to a potentially

different successor mode while performing some discrete actions, cf. Fig. 1 for an

example. We are especially interested in k-bounded model checking problems, i.e.,

we want to prove or disprove whether a given reachability property P is satisfied

with a maximum probability greater or equal p in a probabilistic hybrid automaton
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along all its traces of length up to k. For an illustration of probabilistic bounded

reachability consider the probabilistic hybrid automaton H from Fig. 1 where mode

s2 is the reachability goal. The maximum probabilities of reaching s2 in 0, 1, 2, and

3 steps are 0.0, 0.1, 0.1 + 0.9 · 0.3 = 0.37, and 0.1 + 0.9 · (0.3 + 0.7 · 0.3) = 0.559,

respectively.

The idea of the formalized encoding of a PHA H into an SSMT formula Φ, as

presented in [10], is that the non-deterministic choice of a transition in a PHA cor-

responds to existential quantification in SSMT, while the probabilistic distributions

correspond to randomized quantification. The discrete-continuous behavior of the

automaton then is encoded by means of standard techniques. The construction of Φ

ensures that Φ is satisfiable with maximum probability p iff the PHA H (restricted

to traces of length k) fulfills a certain property P with maximum probability p.

Hence, we can reduce the probabilistic bounded reachability problem of PHAs to

the SSMT problem.

This symbolic encoding together with the Stochastic SMT procedure provides

fully symbolic analysis of probabilistic bounded reachability problems of probabilis-

tic hybrid automata without resorting to approximation by intermediate finite-state

abstractions.
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