
Toward compact abstractions for

processor pipelines∗

Sebastian Hahn, Jan Reineke
Informatik, Saarland University

Saarbrücken

Reinhard Wilhelm
Informatik, Saarland University and

AbsInt Angewandte Informatik GmbH
Saarbrücken

Abstract

Hard real-time systems require programs to react on time. Static timing
analysis derives timing guarantees by analyzing the behavior of programs
running on the underlying execution platform. Efficient abstractions have
been found for the analysis of caches. Unfortunately, this is not the case
for the analysis of processor pipelines. Pipeline analysis typically uses an
expensive powerset domain of concrete pipeline states. Therefore, pipeline
analysis is the most complex part of timing analysis. We propose a compact
abstract domain for pipeline analysis. This pipeline analysis determines
the minimal progress of instructions in the program through the pipeline.

We give a concrete semantics for an in-order pipeline, which forms the
basis for an abstract semantics. On the way, we found out that in-order
pipelines are not guaranteed to be free of timing anomalies, i.e. local worst
decisions do not lead to the global worst case. We prove this by giving
an example. A major problem is how to find an abstract semantics that
guarantees progress on the abstract side. It turns out that monotonicity
on the partial progress order is sufficient to guarantee this.

1 Introduction

In state-of-the-art timing analysis, microarchitectural analysis, i.e. the part
dealing with the influence of the underlying hardware platform on the execution
time behavior, is the most complex part. There are two main reasons for this.

∗This work was supported by the Deutsche Forschungsgemeinschaft (DFG) as part of the
Transregional Collaborative Research Centre SFB/TR 14 (AVACS) and by the Saarbrücken
Graduate School of Computer Science which receives funding from the DFG as part of the
Excellence Initiative of the German Federal and State Governments.

1



The first one is the complexity of modern microprocessors, which feature
(cyclic) interdependencies between components. These interdependencies make
it hard to impossible to decompose the analysis into several more efficient sub-
analyses. Additionally, they often result in so called timing anomalies (i.e.
following local worst cases does not lead to global worst cases) that complicate
the analysis.

The second, not quite independent, reason is that no compact abstract
domain for pipeline analysis has been found, yet, making it necessary to fall-back
to a very expensive powerset domain of concrete pipeline states. The resulting
state space exploration has to investigate all possible transitions of instructions
through the microarchitecture in order not to miss the worst-case behavior. In
this context, the aforementioned timing anomalies prevent state space reduction
based on local decisions.

There are approaches that tackle the efficiency problem. Wilhelm [11] uses
a symbolic representation of the elements of the powerset domain. Other
approaches almost exclusively try to overcome the complexity of modern mi-
croprocessors. They range from stepping-back towards very simplistic pipeline
designs [7] to limiting processor features such that decomposition into more
efficient analyses are possible. One example is the PRET architecture [5] that
features a thread-interleaved pipeline basically leading to sequential execution
w.r.t. a single thread.

Not much research has so far been undertaken to develop compact abstract
domain for pipelines. In the following, we present (speculative) ideas and
thoughts on how such a compact domain could look like. We also determine
sufficient conditions on the concrete pipeline behavior that admit compact
domains while leading to precise results. Enforcing these conditions in hardware
can lead to degradation of the system’s overall performance. Although it cannot
be expected that the efficiency problem is ultimately “solved”, i.e. compact
domains for arbitrarily complex architectures are found, it is a step in this new
direction. In any case, it will provide a better understanding of how to model
the microarchitectural timing behavior.

2 Background

2.1 Pipelines

We consider a normal RISC-like 5-stage in-order pipeline as depicted in Figure 1,
i.e. program instructions are executed in an overlapped fashion, but in the order
they occur in the program. First, an instruction is fetched from memory. Second,
the instruction is decoded and operands are fetched from the register file. Next,
the instruction is executed and potentially a memory address is generated and
the corresponding memory access is initiated. In the next stage, pending data
memory operations are finished. Last, the results computed by the instruction
are written back to the register file. The fetch stage and the memory stage

2



Fetch (IF )
Decode (ID)

Execute (EX)
Memory (MEM)
Write-back (WB)

I$

D$

Memory

Figure 1: 5-stage RISC pipeline. Fetch and memory stage access a common
background memory through separate caches.

(i8,ml)

(i7, 2)
(i6, 0)

IF
ID
EX

MEM
WB

λij ∈ I.



(pre, 0) j > 8

(IF,ml) j = 8

(EX, 2) j = 7

(MEM, 0) j = 6

(post, 0) j < 6

Figure 2: A concrete pipeline state in stage-centric and instruction-centric
representation. The numbers denote the individual latencies, i.e. the cycles
needed for the instruction to become ready in its current stage.

access a common background memory, possibly via separate instruction and
data caches. The progress of an instruction in the pipeline is stalled when data
dependencies would be violated or when an instruction is waiting for a memory
access to be serviced.

Definition 1. We call a pipeline in-order if each stage processes the instructions
in the order they occur in the program.

There are more advanced pipelining techniques that feature dynamic schedul-
ing to reorder instruction and execute them out-of-(program)-order, speculation
across branches, and additional buffers to decouple the pipeline and the memory
hierarchy. We discuss the influence of these features on a compact representation
for pipeline analysis in Section 5. For the remainder of this article, we focus on
the presented in-order processor architecture.

2.2 Concrete Semantics of an In-Order Pipeline

In the following, we give a concrete semantics of an in-order pipeline. The
remainder of this article is based on this concrete semantics.

As depicted in Figure 2, there are two equivalent views of a concrete pipeline
state: A stage-centric view describing which stage is occupied by which instruc-
tion and an instruction-centric view describing which instruction occupies which
stage. We select the second view because the abstract semantics, to be presented
later, will represent the guaranteed progress of instructions through the pipeline.
We use the first view for visualization purposes only.

3



Domain An instruction in the pipeline can occupy one of the stages IF, ID,
EX, MEM, and WB. We further distinguish between instructions that have not
yet entered the pipeline, which are in the conceptual stage “pre”, and instructions
that have already left the pipeline, which are in the conceptual stage “post”.
Together, we obtain the following set of stages:

S := {pre, IF, ID,EX,MEM,WB, post}.

Some of the pipeline stages are multi-cycle, e.g. IF and MEM in case of a
cache miss and EX in the case of expensive arithmetic operations like floating
point division. Thus, we introduce counters that capture how many cycles an
instruction needs to remain in its current stage until being able to advance to
the next stage.

The concrete domain is then defined as

Pipe := I → S × N,

where I denotes the set of instruction instances that form the instruction
sequence i1, i2, . . . , in occurring during program execution.

Cycle Update The cycle update cycle : Pipe → Pipe describes the concrete
behavior of the pipeline informally described above, i.e. how a pipeline state
changes during the execution of one processor cycle. The structure is quite
generic and can be adapted to different pipeline designs: An instruction can
advance in the pipeline if the instruction is ready to move to the next pipeline
stage and this next pipeline stage would be free in the next cycle. An instruction
might not be ready if there are unsatisfied data dependencies or it needs to
wait for a memory transfer. In this case the instruction stays in the same stage,
but its counter of remaining wait cycles might be decremented. If the next
pipeline stage is still occupied in the next cycle, the instruction is stalled and
stays unmodified in its current stage.

The next pipeline stage will be free in the next cycle if it is already free or
if the instruction occupying it can move on to the next stage. An instruction
in the WB stage is considered to always find its (fictive) next stage in the next
cycle.

cycle(p : Pipe) :=

λi ∈ I.


(stage(i), cnt′(i)) : ¬ready(i)

(stage′(i), latency(stage′(i), i)) : ready(i) ∧ willbefree(stage′(i))

(stage(i), cnt(i)) : ready(i) ∧ ¬willbefree(stage′(i))

where (stage(i), cnt(i)) := p(i) and cnt′(i), stage′(i), ready(i), willbefree(s), and
latency(s, i) are defined as follows:

cnt′(i) :=

{
cnt(i)− 1 : cnt(i) > 0

0 : cnt(i) = 0

4



stage′(i) :=



post : stage(i) = WB ∨ (stage(i) = ID ∧ i = nop)

WB : stage(i) = MEM

MEM : stage(i) = EX

EX : stage(i) = ID

ID : stage(i) = IF

IF : stage(i) = pre ∧ tofetch(i)

pre : stage(i) = pre ∧ ¬tofetch(i)

busfree := ¬∃i.(stage(i) = IF ∨ stage(i) = MEM) ∧ cnt(i) > 0

ready(i) := (cnt(i) = 0) ∧ (stage(i) = ID ⇒ data dependencies satisfied)

∧ (stage(i) = EX ∧ i = load/store⇒ (dcachehit ∨ busfree)

∧ (stage(i) = pre⇒ (icachehit ∨ (busfree ∧ ¬dcachemiss))

willbefree(s) := (s = post) ∨ (¬∃i.stage(i) = s)

∨ (∃i.stage(i) = s ∧ ready(i) ∧ willbefree(stage′(i)))

latency(s, i) :=


0 : s ∈ {ID,WB, pre, post}
lat(i) : s = EX

0 : (s = IF ∧ icachehit) ∨ (s = MEM ∧ dcachehit)
ml : (s = IF ∧ icachemiss) ∨ (s = MEM ∧ dcachemiss)

where ml denotes the cache miss latency, and lat(i) denotes the execution
latency of instruction i that can depend on the operand values (e.g. in case
of a division). Some of the values, i.e. lat, icachehit, icachemiss, dcachehit,
dcachemiss, and tofetch(i), depend on the environment of the pipeline that is
known during an actual execution. A latency of 1 cycle is assumed for the access
to an L1 cache. We omitted the state of the environment, such as caches, in this
formulation for the sake of readability.

2.3 State-of-the-art Pipeline Analysis

Current pipeline analyses rely on expensive powerset domains as abstract domains.
An abstract state is a set of concrete pipeline states. The abstract domain is
thus given by

Pipe#
ps := (2Pipe ,⊆,∪).

Basically, state-of-the-art pipeline analysis [4, 9] computes the so-called
collecting semantics of pipeline states, i.e. it computes for each program point the
set of concrete pipeline states that reach the program point during execution. The
transfer function f#ps : Pipe#

ps → Pipe#
ps can thus be defined using the concrete

cycle-function applied element-wise. The (abstract) transfer of a single concrete
pipeline state can nevertheless lead to several successors due to uncertainty in the
environment. E.g. it might be uncertain whether a memory access hits or misses
the caches, or what the values of operands are. In these cases, the necessary

5



A

A

Resource 1

Resource 2

Resource 1

Resource 2

C

B C

B

D E

D E

C ready

Figure 3: Timing Anomaly: The local worst case does not lead to the global
worst case [6].

parts of the environment are concretized resulting in several environments. The
cycle of the concrete state is then applied with each such (partially concretized)
environment.

3 Are In-Order Pipelines Interesting?
Or: What About Timing Anomalies?

Microarchitectural analysis has to cope with uncertainty about (components of
the) execution states. First, it does not generally know the initial execution state,
e.g. the initial occupation of the pipeline stages with old instructions. Secondly,
the analysis works with an abstract model of the architecture, potentially omitting
some details in a safe way, thereby introducing uncertainty in the pipeline and
the environment (e.g. caches). Thirdly, it typically combines information about
the execution states resulting from different paths leading to one program point.
Uncertainty about some components of the execution state may result in non-
deterministic decisions to be made by the analysis based on the powerset domain.

A (timing) anomaly is a scenario where the local worst-case in a non-
deterministic decision does not lead to the global worst case. A classical example
depicted in Figure 3 is a cache miss (locally worse than a cache hit) that leads
to a shorter overall execution time, because in the hit case operations are re-
ordered in a way better suiting the subsequent program. This is often referred
to as scheduling anomaly which is typically present in architectures featuring
out-of-order execution. These anomalies hinder local state space reductions that
would simplify the state-exploring pipeline analysis described in the previous
section.

In-order pipelines with timing anomalies have been discussed earlier in
literature. The anomalous behavior was exclusively triggered by odd cache

6



load ...

nop

load r1, ...

div ..., r1

-----------

ret

(load r1, 0)

(load, 0)

load H IF ret load r1 M EX div

load M load r1 M IF ret

EX div

Figure 4: Left: The program to execute that leads to an anomalous behavior.
Middle: The pipeline state serving as starting point for the anomaly. Right:
The ongoing execution of the program demonstrating the anomaly.

behavior such as pseudo round-robin replacement [9] or partial cache line fills [3].
In-order pipelines with LRU caches have (implicitly) been considered anomaly-
free as they execute instructions in a very regular fashion. As an example,
Wenzel et al. [10] identified resource allocation decisions as necessary condition
for timing anomalies. A resource allocation decision describes a situation where
a latency variation causes instructions to execute in different orders in the
functional units of an superscalar processor.

The pipeline described in Section 2.2 does not allow resource allocation de-
cisions, but nevertheless features a timing anomaly. All instructions enter the
(sole) functional unit in program order – independent of any latency variation.
The definition of a resource allocation decision does not capture, that a latency
variation at the beginning of an instruction sequence can have an anomalous im-
pact on the latency (not the ordering) of later instructions. We will demonstrate
that a timing anomaly is possible anyway and thus the property of in-order
execution is not sufficient. However, the definition of Wenzel et al. [10] could be
extended to also exclude reorderings of memory accesses.

Let us consider an in-order pipeline with separate caches, but common
background memory as described earlier in Figure 1. The anomaly is based on
the observation that in-order pipelines still allow the fetch of a instruction to be
scheduled before the data access of a preceding instruction. In the following, we
discuss the anomaly in more detail.

We make use of the following assumptions on the pipeline behavior that
partially extend the formal description in Section 2.2. The pipeline has the
ability to eliminate instructions from the pipeline that have no effect, e.g. nop
instructions or predicated instructions whose condition is false. Furthermore,
the pipeline features a long-lasting instruction such as floating-point division
whose latency is at least as long as an L1 cache miss. This seems unrealistic at
first glance, however when second-level caches are used to serve first-level misses
it might very well be realistic.

Consider the program and (part of) its execution in Figure 4. The division
instruction is data-dependent on the second load denoted by the dashed arrow
in the right column. The dashed line in the left column denotes the beginning of
a new cache line.

The pipeline state depicted in the middle column arises during execution of

7



the program and serves as a starting point for the timing anomaly. We consider
the following cache environment: The first load instruction might hit (H) or
miss (M) the data cache, resulting in a non-deterministic decision that triggers
the anomalous behavior. The second load instruction misses the data cache. The
fetch of the return instruction misses the instruction cache. The right column
shows the ongoing execution of the program, demonstrating the possibility of
a timing anomaly. The stage between the two loads is free resulting from the
eliminated nop. The anomaly is due to the fact, that the second load can advance
to the EX stage while waiting for the first load to complete its miss. Thus it can
be started before the fetch of the return instruction which suits the execution of
the data-dependent division instruction. In the hit case, the second load becomes
ready too late and is blocked by the already ongoing instruction fetch.

This example demonstrates that in-order pipelines are not a priori anomaly-
free. The existence of timing anomalies thus hinders local state space reductions
even for in-order pipelines. So, they are interesting candidates for a compact
abstract representation—getting rid of the expensive powerset domain and state
space exploration.

4 Compact Abstract Pipeline Domain based on
Minimal Progress

One idea for a compact representation of pipelines is inspired by our efficient
cache analysis [2]. In this cache analysis, must and may analyses are employed
to under-/overapproximate the cache content by tracking the maximal/minimal
age of a cache block. In analogy, the idea for pipeline analysis is to track
minimal/maximal progress of the instructions in the pipeline. The minimal
progress metric can be used to guarantee that an instruction has eventually
finished execution. One concern with minimal progress is, that – despite being
conservative – some progress must be guaranteed for each call of the abstract
domain’s transfer function. Otherwise no bound can be derived.

4.1 Abstract Domain

First, we consider the pipeline behavior for one fixed instruction sequence
i1i2 . . . in with ij ∈ I. This eliminates uncertainty about the program’s control-
flow. We briefly discuss how to handle diverging and merging control-flow later.

Thus, the variation in execution times stems from cache uncertainty and
variable-execution-latency instructions.

Minimal Progress The abstract domain maps each instruction in the se-
quence to its minimal progress

Pipe# := I → Pmin ,

where Pmin := S × N.

8



Note, that the domain is identical to the concrete domain, however the inter-
pretation of a domain element is different. An element ap ∈ Pipe# describes for
each instruction its minimal progress, i.e. the pipeline stage that the instruction
reached at least. Thereby, we establish an ordering on concrete pipeline states.

Defining the partial order First, we define a progress order on the stages
an instruction can be in. The idea behind the ordering is, that later stages are
“better” in the sense that execution should not take longer starting from later
stages. The order vS is then given by

post vS WB vS MEM vS EX vS ID vS IF vS pre.

Some of the stages are multi-cycle, so we extend this to an ordering on progress
vPmin

as follows

(s, n) vPmin (s′, n′)⇔ s vS s
′ ∨ (s = s′ ∧ n ≤ n′).

As the ordering vPmin is total, the induced join is

p tPmin
p′ = (p vPmin

p′) ? p′ : p.

The minimal-progress order on individual pipeline stages can then be extended
to whole pipeline states. Two abstract pipeline states are ordered, if the minimal
progress of all instructions is ordered:

s v s′ ⇔ ∀i ∈ I.s(i) vPmin
s′(i).

Note, that the order respects the “has left the pipeline” property, i.e. whether
an instruction has left the pipeline and thus finished its execution. Formally, if
s(i) = post for i ∈ I and s ∈ Pipe#, then

∀s′ ∈ Pipe#. s′ v s⇒ s′(i) = post.

The join function t is induced by the partial order v and corresponds to
taking the minimal progress for each instruction:

s t s′ = λi ∈ I.s(i) tPmin
s′(i).

As an example consider the illustration in Figure 5.

Concretization/Abstraction Function As already noted, the concrete do-
main and the abstract domain based on minimal progress are structurally
equivalent, yet their interpretations are different. Therefore, an abstract minimal-
progress pipeline state can also be viewed as a concrete state and vice versa.
Note, that we can use the partial order and join defined above for concrete
pipeline states as well. Exploiting this, we give the concretization function γ :

9



(i1, n1)

(i2, n2)

(i3, n3)

(i1, n
′
1)

(i2, n
′
2)

(i3, n
′
3)

(i1, n1)

(i2,max{n2, n′2})
(i3, n

′
3)

t
v w

6v ∧ 6w

Figure 5: Example of minimal-progress based join function. Take the minimum
of the progress of individual instructions.

Pipe# → 2Pipe and abstraction function α : 2Pipe → Pipe# that relate our
abstract domain to the collecting semantics domain and vice versa

γ(ap) := {cp ∈ Pipe | cp v ap}

α(CP ) :=
⊔

cp∈CP

cp

An abstract minimal-progress pipeline state ap thus describes all concrete pipeline
states that have at least the progress of ap. The concretization and the abstraction
function form a Galois connection [1].

4.2 Transfer Function

Before we discuss the transfer function, we present the general correctness
criterion.

Definition 2 (Local Consistency and Best Abstract Transformer, [1]). Let C
and A be the concrete and abstract domains, and let γ : A→ C and α : C → A
be the concretization and abstraction functions, and let f : C → C be the concrete
transformer. An abstract transformer f# : A→ A is locally consistent if and
only if

∀a ∈ A. γ(f#(a)) wC f(γ(a)).

Let f#best = α ◦ f ◦ γ. If α and γ form a Galois connection, f#best is the best
abstract transformer. The best abstract transformer is locally consistent.

Local consistency implies global consistency of the analysis results, i.e. the
correctness of the overall analysis. Thus, it is sufficient to demonstrate local
consistency of our abstract transformer as correctness proof.

10



Next, we try to come up with an abstract transformer for the abstract pipeline
domain based on minimal progress.

The Easy Part

The transfer function takes a minimal progress abstract pipeline state from
Pipe# and computes the effect of the execution for a certain amount of time, e.g.
one cycle. To be useful, the transfer function must always be able to guarantee
strict progress in the sense of our partial order v defined in Section 4.1.

The question to answer is: On what does the progress of an instruction
depend? Clearly, the progress of an instruction depends on whether the next
stage will be free – which in turn depends on the progress the instructions in
these stages will make in the current cycle. This can be observed directly as
the function willbefree in Section 2.2 is recursive. As a consequence, the transfer
function should proceed backwards through the pipeline, i.e. the progress of
instructions in later stages should be determined first. An instruction at least
in stage write back will be at least in stage post after one cycle – no further
dependencies.

Next there are data dependencies that cause hazards, so it also matters
how far the dependent instructions have at least advanced in the pipeline
(see ready in Section 2.2). Most of the data dependencies can be removed by
employing techniques like forwarding; however some remain. Consider a load

instruction followed by an arithmetic operation depending on the loaded value.
If the arithmetic operation is at least in the decode stage, progress can only
be guaranteed if the load is at least in the write-back phase. Observe that
data dependencies have the same “direction” – upstream instructions depend on
downstream instructions – as “resource dependencies” discussed in the previous
paragraph.

The Hard Part

Unfortunately, the progress dependencies can be bidirectional in general, i.e. the
progress of an instruction may also depend on the progress of an instruction
further upstream in the pipeline. As an example, consider an instruction in the
memory stage just about to request memory as part of a data access that is
blocked by an already ongoing instruction fetch. This is caused by the unified
background memory with sequential access.

Why are bidirectional dependencies problematic? A downstream instruction
may be stalled by an upstream instruction and vice versa. If under the abstrac-
tion, it cannot be determined which of the two instructions is progressing and
which is stalled, then no progress is guaranteed for either of the two.

Consider the example abstract state in Figure 6. Recall that the positions
of the instructions represent their minimal progress, i.e. instructions could be
further down the pipeline in a concrete execution. Considering the data access
that might just be about to happen: it could be blocked as the instruction fetch

11



(add,0)pre :

(load, 0)

I$

D$

Memory

miss

miss

Figure 6: How can progress be guaranteed during cycle transfer of this minimal-
progress abstract state?

could already have started. On the other hand, consider the instruction access
that might just be about to happen: it could be blocked as the data access could
already have started. Combining these two arguments, it follows that with the
information available in the abstract domain, no progress can be guaranteed
out of this state during one cycle. Essentially the pipeline deadlocks under the
abstraction and no execution-time bound can be derived at all.

Note, that the uncertainty of whether instruction or data are scheduled for
the bus does not exist within the powerset domain since in each concrete state
it is always clear whether instruction fetch or data fetch acquire the bus first.

Monotonicity

A sufficient criterion to guarantee progress on each call of the transfer function
cycle# is monotonicity of the cycle update cycle. Monotonicity states that the
transfer function preserves the ordering of states:

Definition 3 (Monotonicity). Let two states s1, s2 ∈ Pipe. We call the (con-
crete) transfer function cycle monotone if and only if

s1 v s2 ⇒ cycle(s1) v cycle(s2).

Theorem 1. The abstract transformer cycle# := cycle is the best abstract
transformer of the minimal-progress abstract domain if cycle is monotone.

Proof. We have to prove that cycle# = cycle = α ◦ cycle ◦ γ. By plugging in the
definition of γ and α, the claim becomes

cycle(ap) =
⊔

cpvap

cycle(cp).

Using the monotonicity property of cycle concludes the proof.

Corollary 1. The abstract transformer cycle# := cycle is a sound abstract
transfer function of the minimal-progress abstract domain.

Combined with the property that the order v respects whether instructions
are finished, and given that we start with a correct initial value, it follows that
the analysis leads to overall sound results.

12



However, the transfer function cycle as described in Section 2.2 is not mono-
tone. This can be derived from the timing-anomalous behavior we described in
Section 3. After one cycle, the state in the load-hit case made more progress
compared to the load-miss case. But at the end, the load-miss case leads to a
state that has progressed more.

Proposition 1 (Absence of Timing Anomalies). If the transfer function cycle is
monotone, the powerset-domain-based analysis can safely follow local worst-cases.

The terminology local worst-/best-case suggests that, after one cycle, the
state following the local best-case should have at least the progress as the state
following the local worst-case has. The monotonicity property guarantees, that
further cycling will always preserve this progress ordering. Thus, it is safe to
follow the state with the minimal progress (arising from the local worst-case) –
if the above characterization of local worst-/best-case is appropriate.

Having completely separate instruction and data memory ensures monotonic-
ity. Then, the progress of an instruction solely depends monotonically on the
progress of instructions further down in the pipeline. However, this scenario is
unrealistic – applications could rely on self-modifying code or need to load data
from the instruction memory (e.g. constant pools).

Another “hardware” attempt to ensure monotonicity is to never start a mem-
ory request upon an instruction-cache miss as long as an instruction, potentially
accessing data memory, could be blocked by this. This way, we enforce a stronger
property than in-order execution as we defined it above. In-order execution for
example still allows that the fetch (memory access) of a later instruction can
be scheduled before the data access of an earlier execution. In some sense, the
execution is not in-order w.r.t. to externally visible events such as the acquisition
of the memory bus.

Definition 4 (Strictly In-Order). We call a pipeline strictly in-order if each
resource processes the instructions in the order they occur in the program.

These resources include the pipeline stages as well as the common background
memory. The definition enforces, that all memory accesses of one instruction (i.e.
the instruction fetch and potential data accesses) happen before any memory
access of a later instruction.

Recall the definition of the concrete pipeline semantics in Section 2.2 that is
not strictly in-order. We modify the underlying pipeline such that it becomes
strictly in-order as follows:

ready(i) := . . . ∧ (stage(i) = pre⇒ (icachehit∨
(busfree ∧ ∀pr ∈ prev(i). (pr 6= ld/str ∨ stage(pr) 6∈ {IF, ID,EX}))).

An instruction miss that could block the bus for earlier data memory accessing
instructions is delayed until no such instructions are in the “critical area” any
more. In the case of an instruction cache hit, no such actions are necessary as
the caches are separated.

13



Proposition 2. The strictly in-order pipeline just described is monotone in the
sense of Definition 3.

The detailed proof of this proposition is quite lengthy and therefore we only
present a sketch here. Given two pipeline states s1, s2 such that s1 v s2. The
proof uses a case distinction of the progress of an instruction in s2. The cases
should be considered in a bottom-up fashion starting with post and ending with
pre. This represents the progress dependencies on the progress of instructions
further down the pipeline. Then, we exploit that each instruction has at least
the same progress in s1. Using the definition of the concrete semantics, it follows
that cycle(s1) v cycle(s2).

Note that in general, even a strictly in-order pipeline may feature timing
anomalies, e.g., if it contains multiple incomparable functional units as described
by Wenzel et al. [10].

Outlook: Enriched Abstraction

An alternative to enforcing monotonicity of the concrete behavior of the pipeline
by hardware modifications is to come up with more expressive abstractions. The
idea is to enrich the abstraction with further (instrumented) properties about
the time that has been spent at least in a specific stage.

An analogous idea has been successfully used in shape analysis via three-
valued logic [8]. Additionally introduced instrumentation predicates made it
possible to establish and preserve complex statements about heap-allocated data
structures.

Transferred to our domain: To ensure that some progress is always made
in the abstraction, one can instrument the semantics, so that every instruction
tracks the number of cycles it has spent in a pipeline stage. Independently of
the executed instruction, there is an upper bound on the time needed to pass a
stage that can be determined from the concrete microarchitectural behavior. As
soon as an instruction exceeds this bound, it is guaranteed to have advanced to
the next stage.

Another possibility is to employ additional relational information. The
example in Figure 6 shows, that progress cannot be guaranteed individually
neither for the add nor the load instruction. However, we know that at least one
of the two instructions makes progress in each cycle. Thus, an abstraction that
tracks the progress of both instructions in a relational manner is eventually able
to guarantee that both instructions have progressed to the next stage.

4.3 Diverging and Joining Control Flow

So far, we considered instruction sequences without branching and joining of
control flow. The actual static analysis is performed on a control-flow graph
with branches, control joins, and loops. A detailed and formal explanation of
the consequences is out of the scope of this article, however we want to give a
rough idea of how to extend the domain.

14



The problem with branching/joining is that one abstract state would need
to talk about the behavior of different instruction sequences coming from/going
to different branches of the control-flow graph. The obvious solution is to keep
several abstract states – namely one per branch/different instruction sequence.
After several abstract transformer cycles, the differing instructions will finally
leave the pipeline and allow to join the remaining abstract states according to
their minimal progress.

An efficient representation could be based on directed, acyclic graphs. Nodes
in the graph are the instructions currently processed in the pipeline associated
with their minimal progress. An edge points to the preceding instructions. In
case of branch, several instructions have the same preceding instruction. In
case of a control-flow join, the first common instruction has several preceding
instructions and thus several outgoing edges.

4.4 Why Maximal Progress is not so Important

In this article, we focused on the minimal progress of instructions within a
pipeline which is sufficient to derive an upper bound on the execution times of a
program. In analogy to must-/may-cache analyses, an abstract domain tracking
the maximal progress can be defined. This is needed e.g. for the calculations of
lower bounds on the execution times of a program. Furthermore, in the case of
non-monotone transformers it might be useful to prune some cases as infeasible.

5 Open Problems

So far, we examined in-order pipelines with separate caches which are well-suited
candidates for compact abstractions due to their regular behavior. Modern
processors, however, invest far more complexity to cleverly predict and optimize
the executed instruction sequence. Their behavior is sensitive even to small
local changes – leading to large global changes. This complicates the search for
compact representations.

Branch Prediction and Speculation Speculation techniques allow to ex-
ecute instructions although it is unclear whether they should be executed at
all (e.g. due to an unresolved branch). Speculative execution is known to cause
timing anomalies [6] and is also problematic from the point of view of guaranteed
progress. Corresponding concrete transformers are non-monotone: Speculatively
executed instructions that progress further can turn out to be detrimental for
the overall progress. Besides direct effects such as unnecessary and expensive
memory accesses (see [6] for an example), speculation can pollute the cache
leading to indirect effects due to reloads later.

Buffers such as Store Buffers Additional buffers in the pipeline allow to
further decouple the pipeline and the memory. As an example, stores complete
to a store buffer such that the pipeline can continue execution while – in parallel

15



– the store is actually performed in memory. Such behavior introduces additional
dependencies, e.g. instruction fetches, data loads, and stores compete for the
exclusive bus resource.

Out-Of-Order Execution Data dependencies can hinder the execution of
the current instruction in a program. Out-of-order execution allows to reorder
instructions and thus to execute subsequent instructions whose dependencies
are already satisfied. This complicates the dependencies of an instruction’s
progress – it might depend on the progress of instructions later in the program.
Out-of-order execution is also known to cause timing anomalies [6].

6 Summary and Conclusion

We introduced design principles for pipelines with compact abstractions. We
focus on an abstraction that is based on minimal progress of instructions through
the pipeline. Any useful abstract transformer should guarantee some progress in
each abstract transition. Otherwise, no execution-time bounds can be derived.

We showed that in-order pipelines are not automatically free of timing
anomalies. Further, we found that monotonicity of the concrete transformer is
sufficient for the absence of timing anomalies. Then, we defined strictly in-order
pipelines and showed that these provide for monotone concrete transformers and
thus for compact and effective abstractions.

References

[1] Patrick Cousot and Radhia Cousot. Systematic design of program analysis
frameworks. In Alfred V. Aho, Stephen N. Zilles, and Barry K. Rosen, edi-
tors, Conference Record of the Sixth Annual ACM Symposium on Principles
of Programming Languages, pages 269–282. ACM Press, 1979.

[2] Christian Ferdinand and Reinhard Wilhelm. Efficient and precise cache
behavior prediction for real-time systems. Real-Time Systems, 17(2-3):131–
181, 1999.

[3] Gernot Gebhard. Timing anomalies reloaded. In Björn Lisper, editor, 10th
International Workshop on Worst-Case Execution Time Analysis, WCET,
volume 15 of OASICS, pages 1–10. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, Germany, 2010.

[4] Marc Langenbach, Stephan Thesing, and Reinhold Heckmann. Pipeline
modeling for timing analysis. In Manuel V. Hermenegildo and Germán
Puebla, editors, 9th International Symposium on Static Analysis, SAS,
volume 2477 of LNCS, pages 294–309. Springer, 2002.

[5] Isaac Liu, Jan Reineke, and Edward A Lee. A PRET architecture supporting
concurrent programs with composable timing properties. In Conference

16



Record of the Forty Fourth Asilomar Conference on Signals, Systems and
Computers, pages 2111–2115. IEEE, 2010.

[6] Jan Reineke, Björn Wachter, Stephan Thesing, Reinhard Wilhelm, Ilia
Polian, Jochen Eisinger, and Bernd Becker. A definition and classifica-
tion of timing anomalies. In Frank Mueller, editor, 6th Intl. Workshop
on Worst-Case Execution Time (WCET) Analysis, volume 4 of OASICS.
Internationales Begegnungs- und Forschungszentrum fuer Informatik (IBFI),
Schloss Dagstuhl, Germany, 2006.

[7] Christine Rochange and Pascal Sainrat. A time-predictable execution
mode for superscalar pipelines with instruction prescheduling. In Nader
Bagherzadeh, Mateo Valero, and Alex Ramı́rez, editors, Proceedings of the
Second Conference on Computing Frontiers, pages 307–314. ACM, 2005.

[8] Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Parametric shape
analysis via 3-valued logic. In Proceedings of the 26th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’99,
pages 105–118, New York, NY, USA, 1999. ACM.

[9] Stephan Thesing. Safe and precise WCET determination by abstract inter-
pretation of pipeline models. PhD thesis, Saarland University, 2005.

[10] Ingomar Wenzel, Raimund Kirner, Peter Puschner, and Bernhard Rieder.
Principles of timing anomalies in superscalar processors. In Fifth Interna-
tional Conference on Quality Software (QSIC 2005). IEEE, 2005.

[11] Stephan Wilhelm. Efficient analysis of pipeline models for WCET com-
putation. In Reinhard Wilhelm, editor, 5th Intl. Workshop on Worst-
Case Execution Time (WCET) Analysis, volume 1 of OASICS. Interna-
tionales Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss
Dagstuhl, Germany, 2005.

17


	1 Introduction
	2 Background
	2.1 Pipelines
	2.2 Concrete Semantics of an In-Order Pipeline
	2.3 State-of-the-art Pipeline Analysis

	3 Are In-Order Pipelines Interesting? Or: What About Timing Anomalies?
	4 Compact Abstract Pipeline Domain based on Minimal Progress
	4.1 Abstract Domain
	4.2 Transfer Function
	4.3 Diverging and Joining Control Flow
	4.4 Why Maximal Progress is not so Important

	5 Open Problems
	6 Summary and Conclusion

