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outline appli
ations overview

1 3 3

2 2 1 0

Parity Game P = hV

0

;V

1

;E ; �i

V

0

, and V

1

are disjoint �nite sets of game positions

E � V

0

[ V

1

� V

0

[ V

1

is a set of edges, and

� : V

0

[ V

1

! N is a 
olouring fun
tion

Played by pla
ing a pebble on the arena

� on V

0

player 0 
hooses a su

essor, on V

1

player 1

) in�nite play, highest 
olour o

urring in�nite often

even ; player 0 wins, odd ; player 1 wins



outline appli
ations overview

Appli
ations

(non)emptiness game for parity tree automata

a

eptan
e game for parity tree automata

satis�ability 
he
king for CTL*, ATL*, �-
al
ulus, AT�C . . .

open synthesis for LTL, CTL*, ATL*, �-
al
ulus, AT�C . . .

�-
al
ulus model 
he
king & extensions

(e.g., graded �-
al
ulus, alternating-time �-
al
ulus)

CTL* model 
he
king (three 
olours), ATL* model


he
king

module 
he
king
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Simple & Symmetri


Simple Redu
tion [Zwi
k+Paterson 96℄

Parity Games

+

Mean Payo� Games

+

Dis
ounted Payo� Games

+

Simple Sto
hasti
 Games

Symmetri
 Problem

Until re
ently, only a single deterministi
 symmetri
 algorithm

Fixed Point, [Zwi
k+Paterson 96℄
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Obvious Fa
ts and Open Questions

Obvious Fa
ts

symmetri


) in 
lass \ 
o-
lass

single �xed point of DPG 
an be guessed

) in UP \ 
o-UP [Jurdzi�nski 00℄

Less Obvious Fa
ts

PLS [Be
kmann and Moller 08℄

n

O(

p

n)

[Jurdzi�nski, Zwi
k, and Paterson 08℄

PPAD [Etessami and Yannakakis 10℄
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ations overview

Obvious Fa
ts and Open Questions

Obvious Fa
ts

symmetri


) in 
lass \ 
o-
lass

single �xed point of DPG 
an be guessed

) in UP \ 
o-UP [Jurdzi�nski 00℄

Open Problems

P?

RP / ZPP?

pay-o� games: 2

O(

p

n)

?, 2

o(n)

?



outline appli
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Overview

Rea
hability Games

B�u
hi Games

Parity Games

M
Naughton few 
olours

Jurdzi�nski, Paterson, and Zwi
k

Browne & al. / Jurdzi�nski

their synthesis

bounded tree-width & Co

strategy improvement



B�u
hi Games

Part I

Rea
hability & B�u
hi Games



B�u
hi Games

Solving Rea
hability Games

F

arena

Algorithm � for R = hV

0

;V

1

;E ; F i

start with the �nal states F

set W to  -attra
tor(F )

set W to V rW
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B�u
hi Games

Traps and Paradises

 -Paradise

W

W

arena

Traps and Paradises

A  -trap is a set of states where  
annot get out.

E.g.: W

Remark: W = W

1

 is usually no  -trap.

A  -paradise is a  -trap su
h that  
an win without

leaving it

Example: W
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hi Games

Solving B�u
hi Games

F

arena

Algorithm � for B = hV

0

;V

1

;E ; F i

start with the �nal states F

set A to  -attra
tor(F )

U = V r A is a  -paradise (strategy: stay there)

V =  -attra
tor(U ) is a  -paradise (go to U , stay)

W for B is W for B r V

solve B r V
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B�u
hi Games

Solving B�u
hi Games

V

F

worst 
ase: jV \ F j = 1

arena

Remark

`outdated' approa
h

O(n

2

) [Chaterjee and Henzinger 12℄
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Overview

# 
olours 3 4 5 6 7 8

M
Naughton O(mn

2

) O(mn
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Naughton's Algorithm
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�-Paradise

�-Paradise

arena

De�nition � �-Paradise

Subset P

�

of the positions, s.t. player � has a strategy to

stay in P

�

(�-trap)

that is winning for all states in P

�

.

�-Paradises are 
losed under

union, and

�-attra
tor.
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�/�-Paradise
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De�nition � �/�-Paradise

Paradise P

�

�

that 
ontains all �-paradises of size � �.

�/�-Paradises are 
losed under

union with any �-paradise, and

�-attra
tor.



M
Naughton big steps / JPZ 
ounting big steps / S

Big-Step Algorithm

P

�

�

arena

BigStep Algorithm � for P = hV

0

;V

1

;E ; �i

set 
 to the maximal 
olor, � to 
 modulo 2, and � to 1� �


ompute �/�-paradise P

�

�

, and set P

�

�

to �-attra
tor(P

�

�

)

set P

0

to P r P

�

�

set A to �-attra
tor

�

�

�1

(
)

�

set (U

0

;U

1

) to BigStep(P

0

r A)

set W

�

to �-attra
tor(U

�

) [ P

�

�

, and set W

�

to ;

set (U

0

;U

1

) to BigStep(P rW

�

), return (W

0

_

[U

0

;W

1

_

[U

1

)



M
Naughton big steps / JPZ 
ounting big steps / S

Big-Step Algorithm

P

�

�

arena

BigStep Algorithm � for P = hV

0

;V

1

;E ; �i

set 
 to the maximal 
olor, � to 
 modulo 2, and � to 1� �


ompute �/�-paradise P

�

�

, and set P

�

�

to �-attra
tor(P

�

�

)

set P

0

to P r P

�

�

set A to �-attra
tor

�

�

�1

(
)

�

set (U

0

;U

1

) to BigStep(P

0

r A)

set W

�

to �-attra
tor(U

�

) [ P

�

�

, and set W

�

to ;

set (U

0

;U

1

) to BigStep(P rW

�

), return (W

0

_

[U

0

;W

1

_

[U

1

)



M
Naughton big steps / JPZ 
ounting big steps / S

Big-Step Algorithm

P

�

�

�

�1

(
)

arena

BigStep Algorithm � for P = hV

0

;V

1

;E ; �i

set 
 to the maximal 
olor, � to 
 modulo 2, and � to 1� �


ompute �/�-paradise P

�

�

, and set P

�

�

to �-attra
tor(P

�

�

)

set P

0

to P r P

�

�

set A to �-attra
tor

�

�

�1

(
)

�

set (U

0

;U

1

) to BigStep(P

0

r A)

set W

�

to �-attra
tor(U

�

) [ P

�

�

, and set W

�

to ;

set (U

0

;U

1

) to BigStep(P rW

�

), return (W

0

_

[U

0

;W

1

_

[U

1

)



M
Naughton big steps / JPZ 
ounting big steps / S

Big-Step Algorithm

P

�

�

A

arena

BigStep Algorithm � for P = hV

0

;V

1

;E ; �i

set 
 to the maximal 
olor, � to 
 modulo 2, and � to 1� �


ompute �/�-paradise P

�

�

, and set P

�

�

to �-attra
tor(P

�

�

)

set P

0

to P r P

�

�

set A to �-attra
tor

�

�

�1

(
)

�

set (U

0

;U

1

) to BigStep(P

0

r A)

set W

�

to �-attra
tor(U

�

) [ P

�

�

, and set W

�

to ;

set (U

0

;U

1

) to BigStep(P rW

�

), return (W

0

_

[U

0

;W

1

_

[U

1

)



M
Naughton big steps / JPZ 
ounting big steps / S

Big-Step Algorithm

P

�

�

A

U

�

U

�

arena

BigStep Algorithm � for P = hV

0

;V

1

;E ; �i

set 
 to the maximal 
olor, � to 
 modulo 2, and � to 1� �


ompute �/�-paradise P

�

�

, and set P

�

�

to �-attra
tor(P

�

�

)

set P

0

to P r P

�

�

set A to �-attra
tor

�

�

�1

(
)

�

set (U

0

;U

1

) to BigStep(P

0

r A)

set W

�

to �-attra
tor(U

�

) [ P

�

�

, and set W

�

to ;

set (U

0

;U

1

) to BigStep(P rW

�

), return (W

0

_

[U

0

;W

1

_

[U

1

)



M
Naughton big steps / JPZ 
ounting big steps / S

Big-Step Algorithm

P

�

�

W

�

W

�

6= ; ) jW

�

[ P

�

�

j > �

arena

BigStep Algorithm � for P = hV

0

;V

1

;E ; �i

set 
 to the maximal 
olor, � to 
 modulo 2, and � to 1� �


ompute �/�-paradise P

�

�

, and set P

�

�

to �-attra
tor(P

�

�

)

set P

0

to P r P

�

�

set A to �-attra
tor

�

�

�1

(
)

�

set (U

0

;U

1

) to BigStep(P

0

r A)

set W

�

to �-attra
tor(U

�

) [ P

�

�

, and set W

�

to ;

set (U

0

;U

1

) to BigStep(P rW

�

), return (W

0

_

[U

0

;W

1

_

[U

1

)



M
Naughton big steps / JPZ 
ounting big steps / S

Jurdzi�nski, Paterson, and Zwi
k

invented this approa
he

used it to establish a deterministi
 n

O(

p

n)

bound

Brute For
e (roughly)

try all sets of size up to � 2 O(

p

n)

there are some n

O(

p

n)

many

ea
h level has up to O(

p

n) many 
alls


all tree of size n

O(

p

n)

drawba
k: 
 is, in fa
t, usually tiny 
ompared to

p

n
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Browne & al., Jurdzi�nski

1 1 3

2 4 5 0

If you follow a winning strategy of even on W

0

, then . . .

player odd 
annot for
e > j�

�1

(
)j o

uren
es of any odd


olour 
 without a higher even 
olour in between

player even 
an for
e > j�

�1

(
)j o

uren
es of some (not a

parti
ular!) even 
olour 
 without a higher odd 
olour in

between
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Browne & al., Jurdzi�nski

1 1 3

2 4 5 0

Rules: Jurdzi�nski: ba
kwards, order on 
ounter ve
tor

we start at some initial positions with 
ounters for, say, the

odd 
olours only, inially set to 0

ea
h player 
hooses how to 
ontinue on her verti
es

if we pass an odd 
olour 
 , the 
ounter is in
reased

if we pass an even 
olour 
 , all 
ounters for smaller 
olours

are re-set

player odd wins if a 
ounter ex
eeds j�

�1

(
)j
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Big Steps � What if 
 is Small?

� the 
ommon 
ase �

Stop 
ounting at � (simple!)

d0:5
e many 
ounters

their sum bounded by �

� (

� + d0:5
e

�

) � �

d0:5
e

values


overs all �-paradises P

�

with jP

�

j � �

Complexity: O

�


 m �

d0:5
e

�



M
Naughton big steps / JPZ 
ounting big steps / S

Big-Step Algorithm

P

�

�

arena



M
Naughton big steps / JPZ 
ounting big steps / S

Big-Step Algorithm

P

�

�

arena



M
Naughton big steps / JPZ 
ounting big steps / S

Big-Step Algorithm

P

�

�

�

�1

(
)

arena



M
Naughton big steps / JPZ 
ounting big steps / S

Big-Step Algorithm

P

�

�

A

arena



M
Naughton big steps / JPZ 
ounting big steps / S

Big-Step Algorithm

P

�

�

A

U

�

U

�

arena



M
Naughton big steps / JPZ 
ounting big steps / S

Big-Step Algorithm

P

�

�

W

�

W

�

6= ; ) jW

�

[ P

�

�

j > �

arena



M
Naughton big steps / JPZ 
ounting big steps / S

Solving Parity Games in Big Steps � Complexity

P

�

�

W

�

arena

number of 
olours 3 4 5 6 7 8

paradise 
onstru
tion - O(mn) O(mn

1

1

2

) O(mn

2

) O(mn

2

1

3

) O(mn

2

3

4

)


hosen parameter �




(n) - n

1

2

n

1

2

n

2

3

n

7

12

n

11

16

number of iterations

n

�




(n)

- n

1

2

n

1

2

n

1

3

n

5

12

n

5

16

solving 
omplexity O(mn) O(mn

1

1

2

) O(mn

2

) O(mn

2

1

3

) O(mn

2

3

4

) O(mn

3

1

16

)
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State of the Art

# 
olours 3 4 5 6 7 8

M
Naughton O(mn

2

) O(mn

3

) O(mn

4

) O(mn

5

) O(mn

6

) O(mn

7

)

Browne & al. O(mn

3

) O(mn

3

) O(mn

4

) O(mn

4

) O(mn

5

) O(mn

5

)

Jurdzi�nski O(mn

2

) O(mn

2

) O(mn

3

) O(mn

3

) O(mn

4

) O(mn

4

)

w.o. strategy / [GW15℄ O(mn) O(mn

2

) O(mn

3

)

Big Steps [S07℄ O(mn) O(mn

1

1

2

) O(mn

2

) O(mn

2

1

3

) O(mn

2

3

4

) O(mn

3

1

16

)

[CHL15℄ O(n

2:5

) O(n

3

) O(n

3

1

3

) O(n

3

3

4

) O(n

4

1

16

) O(n

4

9

20

)

Signi�
antly improved 
omplexity bound

from O
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�
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�

� n




�
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�
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+

1
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1
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1
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2
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 is even, and


(
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1
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+

1

2

�

1

d




2

eb




2




if 
 is odd

Se
ond improvement that redu
es the growth in # 
olours



Part III

Bounded Treewidth & Co



Other Parameter

Parity games are in P for other parameters than # 
olours

tree-width [Obdrz�alek 03℄

DAG-width [Berwanger, Dawar, Hunter, and Kreutzer 06℄


lique-width [Obdrz�alek 07℄

Hope

Can this be a foundation for a tra
table algorithm?



A `Positive' Result

Fearnley and S
hewe 2013
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Part IV

Strategy Improvement
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Classi
 Strategy Improvement

�x strategy

: max

: min

: random

0.9

0.4 1

0.5 0

3

4

1

4

3

4

1

4
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Classi
 Strategy Improvement

�nd best response and evaluate

: max

: min

: random

0.9

0.4 1

0.5 0

3

4

1

4

3

4

1

4

0:4 0:55

0:4

0:4 0:3

0:55

tra
table



CSI why symmetry? why not? SSI

Classi
 Strategy Improvement

apply lo
al improvements

: max

: min

: random

0.9

0.4 1

0.5 0

3

4

1

4

3

4

1

4

0:4 0:55

0:4

0:4 0:3
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Classi
 Strategy Improvement

�nd best response & evaluate

: max

: min

: random

0.9

0.4 1

0.5 0

3

4

1

4

3

4

1

4

0:9 0:55

0:4

0:5 0:375

0:55
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Classi
 Strategy Improvement

no lo
al improvent: done

: max

: min

: random

0.9

0.4 1

0.5 0

3

4

1

4

3

4

1

4

0:9 0:55

0:4

0:5 0:375

0:55



CSI why symmetry? why not? SSI

CSI � failed hope

was long hoped to be tra
table

many update poli
ies

8 exponential lower bounds [Friedmann 11,. . . ℄

� use stati
 update poli
y

9 PSPACE powerful [Fearnley+Savani 15℄



CSI why symmetry? why not? SSI

SYMMETRYßT9MMYS

Symmetry and Complexity [Jurdzi�nski 98℄

1

guess valuation

2

verify

) one value: UP

symmetry: UP\CoUP

Iterated Fixed Point [Emerson+Lei 86℄ parity games

similar treatment

best performing algorithm

Optimal Strategy Improvement [S
hewe 08℄

parity games, MPG mean partitions

some symmetry

fab performan
e
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Why not?

Naive symmetri
 strategy improvement

Question: Why has SSI not been thoroughly studied?

Answer: Anne Condon has proved it wrong [Condon 93℄

1

Cun
urrent Swit
h

2

Alternating Best Response
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Con
urrent Swit
h

starting strategies

: max

: min

: random

0.9

0.4 1

0.5 0
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4

1

4

3

4

1

4
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Con
urrent Swit
h

evaluate

: max

: min

: random

0.9

0.4 1

0.5 0

3

4

1

4

3

4

1

4

0:9 1
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0:5 0:375

1
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Con
urrent Swit
h

update strategies

: max

: min

: random

0.9
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0.5 0
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4

1

4
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Con
urrent Swit
h

update evaluation

: max

: min

: random
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Con
urrent Swit
h

update strategy

: max
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Con
urrent Swit
h

update evaluation

: max
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Con
urrent Swit
h

update strategy (
y
le)

: max

: min

: random

0.9

0.4 1
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1

4
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4

1
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Symmetri
 Strategy Improvement

starting strategies

: max

: min

: random

0.9

0.4 1

0.5 0

3

4

1

4

3

4

1

4
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Symmetri
 Strategy Improvement

evaluate � best response

: max

: min

: random

0.9

0.4 1

0.5 0

3

4

1

4

3

4

1

4
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Symmetri
 Strategy Improvement

best response & improvement

: max

: min

: random

0.9

0.4 1

0.5 0

3

4

1

4

3

4

1

4
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Symmetri
 Strategy Improvement

update (done)

: max

: min

: random

0.9

0.4 1

0.5 0

3

4

1

4

3

4

1

4

0:9 0:55

0:4

0:5 0:375

0:55
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Symmetri
 Strategy Improvement

Can SSI help over
ome problems of CSI?

Question: How about single player examples? [Fearnley 10℄

Answer: Easy (but no surprise there)

Question: How about Friedmann's traps? [Friedmann 11,. . . ℄

Answer: Yes but this doesn't imply there are no traps

Question: Less iterations on random games?

Answer: Yes but probably not half

Question: Is SSI polynomial?

Answer: Look at the weather! Isn't it lovely?



CSI why symmetry? why not? SSI

Friedmann's Traps

Swit
h Rule 1 2 3 4 5 6 7 8 9 10

Cunningham 2 6 9 12 15 18 21 24 27 30

CunninghamSubexp 1 1 1 1 1 1 1 1 1 1

FearnleySubexp 4 7 11 13 17 21 25 29 33 37

FriedmannSubexp 4 9 13 15 19 23 27 31 35 39

RandomEdgeExpTest 1 2 2 2 2 2 2 2 2 2

RandomFa
etSubexp 1 2 7 9 11 13 15 17 19 21

Swit
hAllBestExp 4 5 8 11 12 13 15 17 18 19

Swit
hAllBestSubExp 5 7 9 11 13 15 17 19 21 23

Swit
hAllSubExp 3 5 7 9 10 11 12 13 14 15

Swit
hAllExp 3 4 6 8 10 11 12 14 16 18

ZadehExp - 6 10 14 18 21 25 28 32 35

ZadehSubexp 5 9 13 16 20 23 27 30 34 37



summary

Parity Games

with few 
olours

# 
olours 3 4 5 6 7 8

M
Naughton O(mn

2

) O(mn

3

) O(mn

4

) O(mn

5

) O(mn

6

) O(mn

7

)

Browne & al. O(mn

3

) O(mn

3

) O(mn

4

) O(mn

4

) O(mn

5

) O(mn

5

)

Jurdzi�nski O(mn

2

) O(mn

2

) O(mn

3

) O(mn

3

) O(mn

4

) O(mn

4

)

w.o. strategy / [GW15℄ O(mn) O(mn

2

) O(mn

3

)

Big Steps [S07℄ O(mn) O(mn

1

1

2

) O(mn

2

) O(mn

2

1

3

) O(mn

2

3

4

) O(mn

3

1

16

)

[CHL15℄ O(n

2:5

) O(n

3

) O(n

3

1

3

) O(n

3

3

4

) O(n

4

1

16

) O(n

4

9

20

)



summary

Parity Games

Further 
omplexity resuts

NP\CoNP [N
Naughton 93℄

UP\CoUP [Zwi
k and Paterson '96, Jurdzi�nski 98℄

PLS [Be
kmann and Moller 08℄

PPAD [Etessami and Yannakakis 10℄

n

O(

p

n)

[Jurdzi�nski, Zwi
k, and Paterson 08℄

in LogCFL for bounded tree- and 
lique-width [Ganardi 15℄

�xed parameter tra
table for bounded DAG-width



summary

Parity & Pay-O� Games

Strategy Improvement

deterministi
 update [Puri 95, V�oge and Jurdzi�nski 00℄

randomised updates [Ludwig 95, Bj�orklund and Vorobyov 07℄

one-step optimal updates [S 08℄

they are all expensive [Friedmann 09, FHZ 11a℄

symmetri
 strategy improvement [STV 15℄



summary

Parity Games

. . . are simply beautiful!
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