Parity Games

Sven Schewe

University of Liverpool

AVACS alumni presentation, September 29", 2015

Beautiful games you cannot stop playing

© Parity Games with Few Colours

Beautiful games you cannot stop playing

© Parity Games with Few Colours
© Parity Games with Many Colours

© Parity Games with Few Colours
Q Parity Games with Few Colours
© Parity Games with Few Colours

Beautiful games you cannot stop playing

© Parity Games with Few Colours
© Parity Games with Many Colours

© Parity Games with Few Colours
Q Parity Games with Few Colours
© Parity Games with Few Colours

Q Parity Games with Bounded Treewidth

@ Strategy Improvement Algorithms

outline applications overview

VAVAVAN

Parity Game P = (V,, V4, E,)
@ Vj, and V4 are disjoint finite sets of game positions
@ EC VUV x VyU Vi is a set of edges, and
@ a: VpUV; — Nis a colouring function

Played by placing a pebble on the arena

—on V) player 0 chooses a successor, on V; player 1

= infinite play, highest colour occurring infinite often
even ~» player 0 wins, odd ~» player 1 wins

outline

applications

Applications

(non)emptiness game for parity tree automata

@ acceptance game for parity tree automata

overview

o satisfiability checking for CTL*, ATL*, p-calculus, ATuC ...
@ open synthesis for LTL, CTL*, ATL*, p-calculus, ATuC . ..

o p~calculus model checking & extensions
(e.g., graded p-calculus, alternating-time p-calculus)

o CTL* model checking (three colours), ATL* model
checking

@ module checking

outline applications overview

Simple & Symmetric

Simple Reduction [Zwick+Paterson 96]
Parity Games

!
Mean Payoff Games

y

Discounted Payoff Games

Y

Simple Stochastic Games

Symmetric Problem

Until recently, only a single deterministic symmetric algorithm
Fixed Point, [Zwick+Paterson 96]

outline applications overview

Obvious Facts and Open Questions

Obvious Facts
@ symmetric
= in class N co-class

o single fixed point of DPG can be guessed
= in UP N co-UP [Jurdzinski 00]

Less Obvious Facts
e PLS [Beckmann and Moller 08]
e nOWn) [Jurdzinski, Zwick, and Paterson 08]
e PPAD [Etessami and Yannakakis 10]

outline applications overview

Obvious Facts and Open Questions

Obvious Facts
@ symmetric
= in class N co-class

o single fixed point of DPG can be guessed
= in UP N co-UP [Jurdzinski 00]

Open Problems

. P7?
s RP / ZPP?

@ pay-off games: 20(V)7 po(m)7

(]

e ¢

(]

(]

Overview

Reachability Games

Bilichi Games
Parity Games

McNaughton

@ Jurdzinski, Paterson, and Zwick
o Browne & al. / Jurdzinski

o their synthesis

bounded tree-width & Co

strategy improvement

<

overview

few colours

Biichi Games

Part |

Reachability & Biichi Games

Biichi Games

Solving Reachability Games

arena

Algorithm — for R = (V, V1, E, F)
@ start with the final states F

Biichi Games

Solving Reachability Games

arena %

Algorithm — for R = (Vo, V4, E, F)
@ start with the final states F
@ set W, to < -attractor(F)

Biichi Games

Solving Reachability Games

Algorithm — for R = (V, V1, E, F)
@ start with the final states F
@ set W, to < -attractor(F)
@ set W to V N\ W,

Biichi Games

Traps and Paradises

Traps and Paradises
@ A O -trap is a set of states where <> cannot get out.
Eg WD
@ Remark: W, = WZ is usually no [J-trap.

@ A [J-paradise is a <> -trap such that [J can win without
leaving it

Example: W4

Biichi Games

Solving Biichi Games

arena

Algorithm — for B = (Vg, V4, E, F)
o start with the final states F

Biichi Games

Solving Biichi Games

arena [7

Algorithm — for B = (Vg, V4, E, F)
o start with the final states F
@ set A to -attractor(F)

Biichi Games

Solving Biichi Games

Algorithm — for B = (Vg, V4, E, F)
@ start with the final states F
@ set A to -attractor(F)
@ Ug =V \ Aisa[J-paradise (strategy: stay there)

Biichi Games

Solving Biichi Games

Y

7
|

_

“

Algorithm — for B = (Vg, V4, E, F)
@ start with the final states F
@ set A to -attractor(F)
@ Ug =V \ Aisa[J-paradise (strategy: stay there)
@ Vg = O-attractor(Ug) is a [J-paradise (go to Uy, stay)
o Wy for Bis Wy, for BN\ Vg
@ solve B\ Vg

Biichi Games

Solving Biichi Games

Remark
@ ‘outdated’ approach
e O(n?) [Chaterjee and Henzinger 12]

Part 1|

Parity Games

(O Fr <=»

«E»

Q>

Overview

colours 3 4 5 6 7 8
McNaughton O(mn?) O(mn?) O(mn*) O(mn®) O(mn®) O(mn”)
Browne & al. O(mn3) O(mn?) O(mn*) O(mn*) O(mn®) O(mn®)

Jurdzinski O(mn?) O(mn?) O(mn3) O(mn?) O(mn*) O(mn*)

w.o. strategy / [GW15] O(mn) O(mn?) O(mn?)
Big Steps [S07] O(mn) | O(mn'2) | O(mn?) | O(mn23) | O(mn2%) | O(mnis)

[CHL15] om3) | op*) | ow*3) | ow*%) | o(*fe) | o(n*3)

McNaughton big steps / JPZ counting big steps / S

VAVAVAN

Parity Game P = (V,, V4, E,)
@ V4, and V4 are disjoint finite sets of game positions
@ EC VUV x VyU Vi is a set of edges, and
@ a: VpUV; — Nis a colouring function

Played by placing a pebble on the arena

—on V) player 0 chooses a successor, on V; player 1

= infinite play, highest colour occurring infinite often
even ~» player 0 wins, odd ~» player 1 wins

McNaughton big steps / JPZ counting big steps / S

McNaughton's Algorithm

arena

McNaughton's Algorithm — for P = (g, V4, E,)

@ set c to the maximal colour, o to ¢ modulo 2, and dto 1 — o

McNaughton big steps / JPZ counting big steps / S

McNaughton's Algorithm
1Z
darena /

McNaughton's Algorithm — for P = (g, V4, E,)
@ set c to the maximal colour, o to ¢ modulo 2, and dto 1 — o

@ set A to o-attractor(a~*(c))

McNaughton big steps / JPZ counting big steps / S
McNaughton's Algorithm
v

2,
N

McNaughton's Algorithm — for P = (g, V4, E,)
@ set c to the maximal colour, o to ¢ modulo 2, and dto 1 — o
@ set A to o-attractor(a~*(c))
@ set (Up, U1) to McNaughton(P ~ A)

McNaughton big steps / JPZ counting big steps / S

McNaughton's Algorithm

McNaughton's Algorithm — for P = (g, V4, E,)
@ set c to the maximal colour, o to ¢ modulo 2, and dto 1 — o
@ set A to o-attractor(a~*(c))
@ set (Up, U1) to McNaughton(P ~ A)
@ set W; to o-attractor(Us), and set W, to ()
@ set (Up, Ur) to McNaughton(P ~ Ws)
@ return (WoUUy, W1UU;)

McNaughton big steps / JPZ counting big steps / S
McNaughton's Algorithm
v

//////////////////////////////////A

worst case: |WsNa~t(c)| =1

McNaughton's Algorithm — for P = (g, V4, E,)
@ set c to the maximal colour, o to ¢ modulo 2, and dto 1 — o
set A to o-attractor(a ! (c))
set (Up, U1) to McNaughton(P ~ A)
set W, to G-attractor(Us), and set W, to 0)
set (Up, U1) to McNaughton(P ~ W;)
return (WoU Uy, W41UUy)

e © 6 ¢ ¢

McNaughton big steps / JPZ counting big steps / S
McNaughton's Algorithm—\Weakness
v

/’ .
Small '/,/,9'/,,/////////%,;//';/9/4 P | exity

= |a~(c)| iterations — O(mn°~1)

McNaughton's Algorithm — for P = (g, V4, E,)
@ set c to the maximal colour, o to ¢ modulo 2, and dto 1 — o
@ set A to o-attractor(a~*(c))

set (Up, U1) to McNaughton(P ~ A)

set W, to G-attractor(Us), and set W, to 0)

set (Up, U1) to McNaughton(P ~ W;)

return (WoU Uy, W41UUy)

e © ¢ ¢

McNaughton big steps / JPZ counting

o-Paradise

Definition — o-Paradise
@ Subset P, of the positions, s.t. player o has a strategy to
e stay in P,
@ that is winning for all states in P,.
@ o-Paradises are closed under

@ union, and
9 o-attractor.

big steps / S

<
>

McNaughton big steps / JPZ counting big steps / S

o /m-Paradise

Definition — o /m-Paradise
@ Paradise P} that contains all o-paradises of size < .

@ o/m-Paradises are closed under

@ union with any o-paradise, and
@ o-attractor.

McNaughton big steps / JPZ counting big steps / S

Big-Step Algorithm

arena

BigStep Algorithm — for P = (V,, Vi, E,)
@ set ¢ to the maximal color, o to ¢ modulo 2, and G to 1 — o
o compute 7/7-paradise PZ, and set PZ to G-attractor(PX)
o set P’ to P~ PZ

set A to o-attractor(a 1(c))

set (Up, U1) to BigStep(P’ \ A)

set W5 to G-attractor(Us) U P_g and set W, to ()

set (Up, U;) to BigStep(P ~ Wx), return (WoU Uy, W1UU;)

e © ¢ ¢

McNaughton big steps / JPZ counting big steps / S

Big-Step Algorithm

arena

BigStep Algorithm — for P = (V,, Vi, E,)
@ set ¢ to the maximal color, o to ¢ modulo 2, and G to 1 — o
o compute 7 /7-paradise PZ, and set PZ to G-attractor(PX)
o set P’ to P~ PZ

set A to o-attractor(a 1(c))

set (Up, U1) to BigStep(P’ \ A)

set W5 to G-attractor(Us) U P_g and set W, to ()

set (Up, U;) to BigStep(P ~ Wx), return (WoU Uy, W1UU;)

e © ¢ ¢

McNaughton big steps / JPZ counting big steps / S

Big-Step Algorithm

arena

BigStep Algorithm — for P = (V,, Vi, E,)

@ set ¢ to the maximal color, o to ¢ modulo 2, and G to 1 — o
compute 7 /7-paradise PZ, and set PZ to G-attractor(PX)
set P’ to P~ PZ
set A to o-attractor(a 1(c))
set (Up, U1) to BigStep(P’ \ A)
set W5 to G-attractor(Us) U P_g and set W, to ()
set (Up, U;) to BigStep(P ~ Wx), return (WoU Uy, W1UU;)

e © 6 ¢ ¢ ¢

McNaughton big steps / JPZ counting big steps / S

Big-Step Algorithm
darena [V

BigStep Algorithm — for P = (V,, Vi, E,)

@ set ¢ to the maximal color, o to ¢ modulo 2, and G to 1 — o
compute 7 /7-paradise PZ, and set PZ to G-attractor(PX)
set P’ to P~ PZ
set A to o-attractor(a 1(c))
set (Up, U1) to BigStep(P’ \ A)
set W5 to G-attractor(Us) U P_g and set W, to ()
set (Up, U;) to BigStep(P ~ Wx), return (WoU Uy, W1UU;)

e © 6 ¢ ¢ ¢

McNaughton big steps / JPZ counting big steps / S

Big-Step Algorithm
7

/

BigStep Algorithm — for P = (V,, Vi, E,)

@ set ¢ to the maximal color, o to ¢ modulo 2, and G to 1 — o
compute 7 /7-paradise PZ, and set PZ to G-attractor(PX)
set P’ to P~ PZ
set A to o-attractor(a 1(c))
set (Up, U1) to BigStep(P’ \ A)
set W5 to G-attractor(Us) U P_g and set W, to ()
set (Up, U;) to BigStep(P ~ Wx), return (WoU Uy, W1UU;)

e © 6 ¢ ¢ ¢

McNaughton big steps / JPZ counting big steps / S

Big-Step Algorithm

Wg;é®:>|WEUP_§|>7T

BigStep Algorithm — for P = (V,, Vi, E,)

@ set ¢ to the maximal color, o to ¢ modulo 2, and G to 1 — o
compute 7 /7-paradise PZ, and set PZ to G-attractor(PX)
set P’ to P~ PZ
set A to o-attractor(a 1(c))
set (Up, U1) to BigStep(P’ \ A)
set W5 to G-attractor(Us) U P_g and set W, to ()
set (Up, U;) to BigStep(P ~ Wx), return (WoU Uy, W1UU;)

e © 6 ¢ ¢ ¢

McNaughton big steps / JPZ counting big steps / S

Jurdzinski, Paterson, and Zwick

@ invented this approache

@ used it to establish a deterministic n°(vY" bound

Brute Force (roughly)
@ try all sets of size up to m € O(y/n)
o there are some n°V") many
@ each level has up to O(y/n) many calls

o call tree of size n0(V1)

drawback: c is, in fact, usually tiny compared to \/n

McNaughton big steps / JPZ counting big steps / S

Browne & al., Jurdzinski

VAVAVAN

If you follow a winning strategy of even on W, then ...

o player odd cannot force > |a!(c)| occurences of any odd
colour ¢ without a higher even colour in between

@ player even can force > |a~!(c)| occurences of some (not a

particular!) even colour ¢ without a higher odd colour in
between

McNaughton big steps / JPZ counting big steps / S

Browne & al., Jurdzinski

VAVAVAN

Rules: Jurdzinski: backwards, order on counter vector

@ we start at some initial positions with counters for, say, the
odd colours only, inially set to 0

@ each player chooses how to continue on her vertices
@ if we pass an odd colour ¢, the counter is increased

@ if we pass an even colour ¢, all counters for smaller colours
are re-set

o player odd wins if a counter exceeds |a~1(c)|

McNaughton big steps / JPZ counting big steps / S

Big Steps — What if ¢ is Small?

— the common case —

Stop counting at 7 (simple!)
@ [0.5¢] many counters

@ their sum bounded by 7
< (m + [0.5¢]) ~~ 710.5¢]

values

(]

(]

covers all o-paradises P5 with |Pyz| <«
Complexity: O(cmwm'&])

McNaughton big steps / JPZ counting big steps / S

Big-Step Algorithm

arena

McNaughton big steps / JPZ counting big steps / S

Big-Step Algorithm

arena

McNaughton big steps / JPZ counting big steps / S

Big-Step Algorithm

arena

McNaughton big steps / JPZ counting big steps / S

Big-Step Algorithm

arena

McNaughton big steps / JPZ counting

Big-Step Algorithm

%

7

Wy #0 = [We UPZ| > 7

counting

big steps

McNaughton big steps / JPZ counting big steps / S

Solving Parity Games in Big Steps — Complexity

number of colours 3 4 5 6 7 8
) . 1l) 21 23
paradise construction - O(mn) O(mn~2) O(mn<) O(mn°3) O(mn©4)
1 1 2 e 11
chosen parameter w(n) n2 n2 n3 ni2 n16
. . 1 1 1 5 5
number of iterations —2 n2 n2 n3 ni2 n1é
me(n)
, , 11 R 21 23 3l
solving complexity O(mn) O(mn~2) O(mn*©) O(mn°3) O(mn©4a) O(mn~16)

big steps / S

State of the Art
4 5 6

colours 3 7 8
McNaughton O(mn?) O(mn?) O(mn*) O(mn®) O(mn®) O(mn”)
Browne & al. O(mn3) O(mn?) O(mn*) O(mn*) O(mn®) O(mn®)

Jurdzinski O(mn?) O(mn?) O(mn3) O(mn?) O(mn*) O(mn*)

w.o. strategy / [GW15] O(mn) O(mn?) O(mn?)

Big Steps [S07] O(mn) | Omn'%) | O(mn?) | O(mn23) | O(mn?l) | O(mni6)
[cHL15] ow?®) | o) | ow’h) | o@i) | owls) | owwd)

@ Significantly improved complexity bound
s from O(cm(r52=)1%%¢l) to O(m(“—c”)ﬁ/(c)) for

10.5¢]
ye)y=3c+3-L - (%11—L§J if ¢ is even, and

’y(c):§c+%—% if ¢ is odd

@ Second improvement that reduces the growth in # colours

Part |1

Bounded Treewidth & Co

Other Parameter

Parity games are in P for other parameters than # colours
o tree-width [Obdrzalek 03]
o DAG-width [Berwanger, Dawar, Hunter, and Kreutzer 06]
o clique-width [Obdrzalek 07]

Hope

Can this be a foundation for a tractable algorithm?

A ‘Positive’ Result

Fearnley and Schewe 2013
@ NC? for bounded tree-width k
+ improved bound O(n c2(k+1)2) ~ O((n k% k!(c + 1)3k+1)
+ fixed parameter tractable for bounded DAG-width

A ‘Positive’ Result

Fearnley and Schewe 2013
@ NC? for bounded tree-width k
+ improved bound O(n c2(k+1)2) ~ O((n k% k!(c + 1)3k+1)
+ fixed parameter tractable for bounded DAG-width

Improved by Ganardi 2015
@ LogCFL for bounded tree-width
@ LogCFL for bounded cleaque-width
@ LogDCFL for tree-width 2

why symmetry? why not?

Part 1V

Strategy Improvement

09 —I[]

why symmetry? why not?

Classic Strategy Improvement
fix strategy

o
AN
% o/

—
Blw
ENT
——

0.5 0

o & [

()]

: max
© min

: random

why symmetry? why not?

Classic Strategy Improvement

find best response and evaluate

0.4 1

0.4<>

Bw

0.55

Al
o ——

09 ———[] 04

(@]

~
—

Alw

[=

-~

o

w

0.5 0

SSi
[]: max
<& min
O : random
[] 0.55
tractable

Csl why symmetry? why not? SSi

Classic Strategy Improvement

apply local improvements

0.4 1 - max
’ %’ <& min
0.4 3 0.55 O : random
& . ©
09 ——[] 04 [] 0.55

(@]
N
-—
Alw
N
-~
o
w

0.5 0

Csl why symmetry? why not?

ssl
Classic Strategy Improvement
find best response & evaluate
0.4 1 o
w %’ <& min
0.4 3 0.55 O : random
O . o
09 <——[] 0.9 [] 055

©)
0.375

©
ol
—0
Blw
ENT
-—

0.5 0

Csl why symmetry? why not? SSi

Classic Strategy Improvement

no local improvent: done

0.4 1 o
’ %’ <& min
0.4 3 0.55 O : random
& . ©
09 <=—[] 0.9 [] 0.55
(@)
0.5<> 3 0.375
2

0.5 0

CSI - failed hope

@ was long hoped to be tractable
@ many update policies

V exponential lower bounds [Friedmann 11,...]
— use static update policy

3 PSPACE powerful [Fearnley+Savani 15]

(S]] why symmetry? why not?

SYMMETRYATIAMMY'S
Symmetry and Complexity [Jurdzinski 98]

© guess valuation
Q verify

= one value: UP
symmetry: UPNCoUP

v

Iterated Fixed Point [Emerson+Lei 86] parity games
@ similar treatment

@ best performing algorithm

y

Optimal Strategy Improvement [Schewe 08]
parity games, MPG mean partitions
@ some symmetry

o fab performance

why symmetry? why not?

Why not?

Naive symmetric strategy improvement
Question: Why has SSI not been thoroughly studied?

Answer: Anne Condon has proved it wrong [Condon 93]

© Cuncurrent Switch

© Alternating Best Response

09 <——[]

why symmetry?

Concurrent Switch

starting strategies

why not?

0.4 1

Blw

Blw
ENT
——

0.5 0

SSI
[]: max
<& min
O : random

09 <——[] 0.9

why symmetry?

Concurrent Switch

evaluate

why not?

0.4 1

| |

Blw

& O

©
ol
—0
Blw
ENT
-—

©)
0.375

0.5 0

[]: max
<& min

O : random

why symmetry? why not?

09 ——[] 09

Concurrent Switch

update strategies

0.4 1
4
1 3
& . o)

N\
S/

©)
0.375

©
ol
—0
Blw
ENT
-—

0.5 0

[

o & [

1

(9]

: max
© min

: random

(S]] why symmetry? why not? SSi

Concurrent Switch

update evaluation

0.4 1 T max
w %’ <& min
0.4 3 0.55 O : random
O . o)
09 ——[] 04 [] 0.55

©)
0.375

©
ol
—0
Blw
ENT
-—

0.5 0

(S]] why symmetry? why not? SSi
y

Concurrent Switch

update strategies

0.4 1 - max
w %’ <& min
0.4 3 0.55 O : random
& : @
0.9 <—[] 04] 0.55
(@)
0.5<> 3 0.375
2

0.5 0

(S]] why symmetry? why not? SSi
y

Concurrent Switch

update evaluation

0.4 1 - max
w %’ <& min
0.4 3 0.55 O : random
& . O
09 <=—[] 0.9 [] 0.55
@)
0.9<> 3 0.675
2

0.5 0

(S]] why symmetry? why not? SSi

Concurrent Switch
update strategy

0.4 1 T max
w %’ <& min
0.4 3 0.55 O : random
O . o)
09 <=—[] 0.9 [] 0.55

©)
0.675

©
()
—0
Blw
ENT
-—

0.5 0

(S]] why symmetry? why not? SSi

Concurrent Switch

update evaluation

0.4 1 T max
w %’ <& min
0.4<> 3 0.55 O : random
09 <=—[] 0.9 []0.375

©)
0.375

©
ol
—0
Blw
ENT
-—

0.5 0

(S]] why symmetry? why not? SSi

Concurrent Switch
update strategy (cycle)

0.4 1 T max
’ %’ <& min
0.4<> 3 0.55 O : random
09 <=—[] 0.9 []0.375

©)
0.375

©
ol
—0
Blw
ENT
-—

0.5 0

09 <——[]

why symmetry? why not?

Symmetric Strategy Improvement

starting strategies

0.4 1

Blw

Alw
N
-~

0.5 0

SSI
[]: max
<& min
O : random

09 ——I[]

why symmetry? why not?

Symmetric Strategy Improvement

evaluate — best response

0.4 1
<& ' O

D
Blw
ENT
-~

0.5 0

SSI
[]: max
<& min
O : random

09 ——I[]

why symmetry? why not?

Symmetric Strategy Improvement

best response & improvement

0.4 1
<& ' O

D
Blw
ENT
-~

0.5 0

SSI
[]: max
<& min
O : random

(S]] why symmetry? why not?

Ssi
Symmetric Strategy Improvement
update (done)
0.4 1 [J: max
w %’ <& min
0.4 3 0.55 O : random
& - o
0.9 <—[1] 0.9 [] 055

©)
0.375

o
ol
—0
Blw
ENT
-—

0.5 0

Can SSI he
Question

Answer

Question:

Answer:

Question:

Answer:

Question:

Answer:

why symmetry? why not?

Symmetric Strategy Improvement

Ip overcome problems of CSI?
: How about single player examples? [Fearnley 10]

: Easy (but no surprise there)

How about Friedmann's traps? [Friedmann 11,...]

Yes but this doesn't imply there are no traps

Less iterations on random games?

YeS but probably not half

Is SSI polynomial?
Look at the weather! Isn't it lovely?

Friedmann's Traps

Switch Rule 1 2 4 5 6 7 8 9 10
Cunningham 2 6 12 15 18 21 24 27 30
CunninghamSubexp 11 1 1 1 1 1 1 1 1
FearnleySubexp 4 7 11 13 17 21 25 29 33 37
FriedmannSubexp 4 9 13 15 19 23 27 31 35 39
RandomEdgeExpTest |1 2 2 2 2 2 2 2 2 2
RandomFacetSubexp |1 2 7 11 13 15 17 19 21
SwitchAllBestExp 4 5 8 11 12 13 15 17 18 19
SwitchAllBestSubExp | 5 7 9 11 13 15 17 19 21 23
SwitchAllSubExp 3 5 7 10 11 12 13 14 15
SwitchAllExp 3 4 6 8 10 11 12 14 16 18
ZadehExp - 6 10 14 18 21 25 28 32 35
ZadehSubexp 9 13 16 20 23 27 30 34 37

summary

Parity Games

with few colours

colours 3 4 5 6 7 8
McNaughton O(mn?) O(mn?) O(mn*) O(mn®) O(mn®) O(mn”)
Browne & al. O(mn3) O(mn?) O(mn*) O(mn*) O(mn®) O(mn®)

Jurdzinski O(mn?) O(mn?) O(mn3) O(mn?) O(mn*) O(mn*)

w.o. strategy / [GW15] O(mn) O(mn?) O(mn?)
Big Steps [SO7] O(mn) | O(mn'%) | O(mn?) | O(mn23) | O(mn?2) | O(mni6

[CHL15] 0% | o) | ow*3) | ow*?) | otls) | o(n*=0)

summary

Parity Games

Further complexity resuts

o NPNCoNP [NcNaughton 93]
o UPNCoUP [Zwick and Paterson 96, Jurdzinski 98]
e PLS [Beckmann and Moller 08]
e PPAD [Etessami and Yannakakis 10]
e nOvn) [Jurdziriski, Zwick, and Paterson 08]

@ in LogCFL for bounded tree- and clique-width [Ganardi 15]
fixed parameter tractable for bounded DAG-width

summary

Parity & Pay-Off Games

Strategy Improvement

@ deterministic update [Puri 95, V6ge and Jurdzirski 00]
@ randomised updates [Ludwig 95, Bjérklund and Vorobyov 07]
@ one-step optimal updates [S 08]
@ they are all expensive [Friedmann 09, FHZ 11a]

@ symmetric strategy improvement [STV 15]

Parity Games

... are simply beautiful!

	motivation
	outline
	applications
	overview

	Reachability & Büchi Games
	Büchi Games

	Parity Games
	McNaughton
	big steps / JPZ
	counting
	big steps / S

	Bounded Treewidth & Co
	Strategy Improvement
	CSI
	why symmetry?
	why not?
	SSI

	summary
	summary

